MyBooks.club
Все категории

Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews. Жанр: Личные финансы издательство КНОРУС; ЦИПСиР,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Издательство:
КНОРУС; ЦИПСиР
ISBN:
978-5-406-01441-7
Год:
2011
Дата добавления:
25 июль 2018
Количество просмотров:
875
Читать онлайн
Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews

Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews краткое содержание

Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews - описание и краткое содержание, автор Владимир Брюков, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Детально излагаются методики построения стационарных и нестационарных статистических моделей по прогнозированию курса доллара США с использованием программ EViews и Excel. При этом прогнозы по курсу доллара к рублю делаются с упреждением в один месяц, две и одну неделю, а по курсу евро к доллару — с упреждением в один день. Особый акцент сделан на составлении (с установленным инвестором уровнем надежности) прогнозов цен покупки и продажи валют для работы на валютном рынке на основе разработанных статистических моделей. Все методики с успехом применяются на практике.

Для всех, кто интересуется валютным рынком, собирается зарабатывать или уже зарабатывает на этом рынке, хочет научиться делать прогнозы по курсам валют. Для валютных инвесторов, трейдеров и студентов, будущая профессия которых связана с работой в банке, финансовой компании или с операциями на финансовых и товарных рынках.

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews читать онлайн бесплатно

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews - читать книгу онлайн бесплатно, автор Владимир Брюков

Однако сначала давайте посмотрим, насколько устойчива полученная прогностическая модель к внезапному росту волатильности на валютном рынке? Чтобы убедиться в устойчивости этой прогностической модели, необходимо проверить авторегрессионный процесс (AR-структуру этой модели) на стационарность. В EViews провести эту проверку достаточно несложно. При этом следует иметь в виду, что в ходе решения уравнения регрессии (см. алгоритм действий № 6 «Как решить уравнение регрессии в EViews») диалоговое мини-окно EQUATION SPECIFICATION заполняется иначе, а именно вместо записи USDollar USDollar(-l) USDollar(-2) в него надо вставить формулу

USDollar AR(1) AR(2), (5.1)

где AR(1) — переменная с лагом в один месяц;

AR(2) — переменная с лагом в два месяца.

Формула (5.1) по своей математической сути аналогична формуле USDollar USDollar(-l) USDollar(-2), однако ввод в EViews уравнения по этой формуле дает возможность оценить авторегрессионный процесс на стационарность. Естественно, что при выводе итогов мы получим данные, практически аналогичные тем, которые уже содержатся в табл. 4.1. Одно из незначительных отличий заключается в том, что при выводе итогов ранее использовавшиеся обозначения переменных в виде USDOLLAR(-l) и USDOLLAR(-2) будут заменены соответственно на AR(1) и AR(2). Но самое главное заключается в том, что помимо уже известной нам информации в выводе итогов внизу появятся две дополнительные строки, в которых содержится оценка ARMA-структуры этого уравнения на стационарность (табл. 5.1).

Судя по информации в этой таблице, AR-структура этого уравнения оказалась нестационарной, поскольку один из обратных единичных корней оказался больше единицы (подробнее об этом чуть позже). А из нестационарности AR-процесса вытекает вывод, что коэффициенты уравнения авторегрессии будут неустойчивыми. Таким образом, несмотря на довольно неплохие прогностические качества этой статистической модели, ее параметры нельзя назвать достаточно надежными к воздействию внешних «шоков», т. е. к случаям внезапного и резкого повышения курса доллара.

Чтобы точнее оценить степень устойчивости этой прогностической модели, продолжим проверку ее авторегрессионной структуры, тем более что EViews позволяет сделать это с минимальными затратами времени.

Алгоритм действий № 13 Тестирование на стационарность AR-структуры уравнения USDOLLAR = а × USDOLLAR(-1) + b × USDOLLAR(-2) путем нахождения корней характеристического уравнения

Шаг 1. Нахождение корней характеристического уравнения

С этой целью в меню оцененного уравнения регрессии следует воспользоваться следующими опциями: VIEW/ARMA STRUCTURE (посмотреть/структуру модели ARMА). В результате чего на экране появится диалоговое мини-окно ARMA DIAGNOSTIC VIEWS (посмотреть диагностику модели ARMА).

Если в этом окне (рис. 5.1) выбрать опции ROOTS (корни) и TABLE (таблица), то в результате у нас получатся обратные корни характеристического уравнения в виде табл. 5.2. Судя по таблице, один из корней (по модулю) этого характеристического уравнения оказался больше единицы.

Шаг 2. Интерпретация корней характеристического уравнения

Чуть ниже мы остановимся подробнее на специфике корней, получаемых в результате решения характеристического уравнения. А сейчас отметим их самое важное для нас свойство: в том случае, когда абсолютные значения (по модулю) всех обратных корней этого уравнения меньше единицы, т. е. лежат внутри единичного круга, то этот авторегрессионный процесс можно считать стационарным, а следовательно, обладающим устойчивыми вероятностными характеристиками. Если же хотя бы один из обратных корней характеристического уравнения больше единицы, т. е. лежит за пределами единичного круга, то тогда авторегрессионный процесс является нестационарным.

Шаг 3. Построение графика корней характеристического уравнения

Если в мини-окне ARMA DIAGNOSTIC VIEWS выбрать опции ROOTS (корни) и GRAPH (график), то в этом случае мы получим обратные единичные корни характеристического уравнения в наглядном, графическом виде. Судя по рис. 5.2, один из корней находится внутри единичного круга, в то время как другой корень, хотя и расположен довольно близко к этому кругу, но все-таки лежит за его пределами. При этом следует иметь в виду, что горизонтальная ось на этом графике показывает фактические значения полученных обратных корней характеристического уравнения, в то время как вертикальная ось — их воображаемые значения.

Теперь остановимся несколько подробнее на процедуре получения обратных единичных корней, с помощью которой в EViews доказывается стационарность AR-процессов. В главе 4 уже говорилось, что в основе теории единичного корня лежит довольно простая формула (4.4), которая считается базовой для понимания стационарности в уравнениях авторегрессии:

При этом уравнение авторегрессии 1-го порядка считается стационарным в том случае, когда коэффициент регрессии ρ < 1. Соответственно, если ρ > 1, то оно считается нестационарным, а следовательно, волатильность в процессе авторегрессии с течением времени может нарастать и стремиться к бесконечности.

Применительно к авторегрессионным процессам, содержащим большое количество лаговых переменных, наличие стационарности предполагает следующее. AR-процессы считаются стационарными в том случае, если в уравнении (5.2) коэффициенты а1, а2…., ар образуют сходящийся ряд и все корни характеристического уравнения 1 — a1Z — a2Z2 — … — apZp = 0 (вещественные и комплексные) должны лежать вне единичного круга (см. рис. 5.2), их абсолютное значение (по модулю) должно быть больше единицы.

Например, для решенного нами уравнения авторегрессии USDOLLAR = 1,321092 × USDOLLAR(-l) — 0,319415 × USDOLLAR(-2) (см. формулу (4.3)) характеристическое уравнение приобретает следующий вид:

1 — 1,321092Yt-1 + 0,319415Y2t-1 = 0. (5.3)

Корни в этом уравнении находятся с помощью известной со школьной скамьи формулы по нахождению корней в многочлене второй степени:

Отсюда следует, что первый единичный корень x1 = 3,138429, а второй х2 = 0,997545. Таким образом, один из этих двух корней характеристического уравнения лежит внутри единичного круга, а потому этот авторегрессионный процесс нельзя назвать стационарным. Однако мы уже говорили, что в EViews находятся не просто единичные корни, а именно ОБРАТНЫЕ единичные корни, которые мы получаем в выводе итогов (см. табл. 5.1) после небольших дополнительных вычислений. При этом первый и второй обратные единичные корни находятся из обычных единичных корней, полученных из уравнения (5.3), следующим образом: х1 = 1: 3,138429 = 0,318631, а второй х2 = = 1: 0,997545 = 1,002461.


Владимир Брюков читать все книги автора по порядку

Владимир Брюков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews отзывы

Отзывы читателей о книге Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews, автор: Владимир Брюков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.