MyBooks.club
Все категории

Брайан Керниган - UNIX — универсальная среда программирования

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Брайан Керниган - UNIX — универсальная среда программирования. Жанр: Программное обеспечение издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
UNIX — универсальная среда программирования
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
16 сентябрь 2019
Количество просмотров:
366
Читать онлайн
Брайан Керниган - UNIX — универсальная среда программирования

Брайан Керниган - UNIX — универсальная среда программирования краткое содержание

Брайан Керниган - UNIX — универсальная среда программирования - описание и краткое содержание, автор Брайан Керниган, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.Для программистов-пользователей операционной системы UNIX.

UNIX — универсальная среда программирования читать онлайн бесплатно

UNIX — универсальная среда программирования - читать книгу онлайн бесплатно, автор Брайан Керниган

8.7 Оценка времени выполнения

Мы сравнивали hoc с другими программами-калькуляторами UNIX, чтобы приблизительно оценить, насколько хорошо он работает. К таблице, представленной ниже (табл. 8.1), можно, конечно, отнестись скептически, но она показывает "разумность" нашей реализации. Все приведенные в ней величины даны в секундах. Работа велась на PDP-11/70. Было выполнено два теста. Первый, вычисление функции Аккерманна ack(3,3), — хороший тест для отработки механизма вызова функций. Здесь происходят 2432 вызова, причем некоторые из них достаточно глубоко вложены.

func ack() {

 if ($1 == 0) return ($2+1)

 if($2 == 0) return (ack($1 - 1, 1))

 return (ack($1 - 1, ack($1, $2 - 1)))

}

ack(3,3)

Второй тест — стократное вычисление чисел Фибоначчи со значениями, меньшими 1000. В этом случае выполнялись в основном арифметические операции с периодическим вызовом функций:

proc fib() {

 a = 0

 b = 1

 while (b < $1) {

  с = b

  b = a+b

  a = c

 }

}

i = 1

while (i < 100) {

 fib(1000)

 i = i + 1

}

Тест выполнялся на четырех языках: hoc, bc(1), bas (древний диалект Бейсика, который существует только на PDP-11) и Си (использовался тип PDP-11 для всех переменных) .

Числа, приведенные в табл. 8.1, являются суммой пользовательского и системного времени процессора и вычислены с помощью функции time.

Программа (3,3) 100*fib(1000) hoc 5.5 5.0 bas 1.3 0.7 bc 39.7 14.9 c <0.1 0.1

Таблица 8.1: Время работы на PDP-11/70 (в секундах)


Можно также приспособить Си программу для определения количества времени, используемого каждой функцией. Программу нужно перетранслировать в режиме профилирования, введя флаг -p в каждой единице трансляции Си и при режиме загрузки. Если изменить файл makefile для чтения:

hoc6: $(OBJS)

      сс $(CFLAGS) $(OBJS) -lm -о hoc6

чтобы команда сс задействовала переменную CFLAGS, а затем задать

$ make clean; make CFLAGS=-p

то результирующая программа будет выполняться с профилированием. После выполнения программы остается файл mon.out, который интерпретируется программой профилировщиком prof.

Для иллюстрации изложенного мы протестировали hoc6 на приведенной выше программе Фибоначчи:

$ hoc6 <fibtest       Запуск теста

$ prof hoc6 | sed 15q Анализ

name   %time cumsec #call ms/call

_pop    15.6 0.85   32182  0.03

_push   14.3 1.63   32182  0.02

mcount  11.3 2.25

csv     10.1 2.80

cret     8.8 3.28

_assign  8.2 3.73    5050  0.09

_eval    8.2 4.18    8218  0.05

_execute 6.0 4.51    3567  0.09

_varpush 5.9 4.83   13268  0.02

_lt      2.7 4.98    1783  0.08

_constpu 2.0 5.09     497  0.22

_add     1.7 5.18    1683  0.05

_getarg  1.5 5.26    1683  0.05

_yyparse 0.6 5.30       3 11.11

$

Результаты, полученные с помощью профилировщика, также подвержены случайным вариациям, как и те, что получены с помощью функции time, поэтому их следует считать лишь указанием настоящих значений, а не принимать за абсолютную истину. Тем не менее при необходимости приведенные значения могут помочь повысить быстродействие программы hoc. Приблизительно третья часть времени тратится на запись и чтение из стека. Накладные расходы еще более возрастут, если мы будем учитывать время выполнения функций связи csv и cret между программами Си (функция mcount представляет собой часть программы с профилированием, полученную с помощью команды ее -р.). Замена вызовов функций на макрообращения даст заметную разницу во времени выполнения.

Для проверки этого предположения мы изменили code.c, заменив вызовы push и pop на макрокоманды, управляющие стеком:

#define push(d) *stackp++ = (d)

#define popm() *--stackp = pop() /* функция все-таки нужна */

(Функция pop все-таки нужна в качестве кода операции нашей машины, поэтому нельзя заменить все обращения к ней.) Новая версия выполняется на 35% быстрее; время в табл. 8.1 сокращается от 5.5 до 3.7 с и от 5.0 до 3.1 с.

Упражнение 8.22

В макрокомандах push и popm не предусмотрен контроль ошибок. Прокомментируйте разумность такого решения. Как бы вы обеспечили контроль ошибок, производимый в версии с функциями, не снижая быстродействия макрокоманд?

8.8 Заключение

Ознакомившись с материалом этой главы, мы можем сделать важные выводы. Во-первых, средства для развития языков очень нужны, так как позволяют сконцентрировать внимание на интересной работе проектировании языка (с ним легко экспериментировать). Грамматика является организующей структурой при реализации: программы привязываются к грамматике и вызываются в подходящий момент в процессе разбора.

Во-вторых, и это уже философский аспект, ценна сама постановка задачи речь идет о разработке языка, а не просто о написании программы. Построение программы как языкового процессора обеспечивает регулярность синтаксиса (т.е. взаимодействие с пользователем), делает более структурированной реализацию. Кроме того, мы получаем гарантию, что новые средства будут хорошо согласовываться с уже реализованными. Под "языками", конечно, следует понимать не только традиционные языки программирования, но и уже упоминавшиеся выше в примерах языки eqn и pick, а также yacc, lex, и make.

Рассмотрены здесь и вопросы использования программных средств. В частности, показана роль программы make, которая предотвращает целый класс ошибок (например, вы забыли перетранслировать какую-то подпрограмму). Она позволяет избавиться от лишней работы и предоставляет удобный способ сгруппировать в одном файле большое число связанных и, возможно, зависимых операций.

С помощью файлов макроопределений вы можете координировать описания данных, доступных более чем в одном файле. Проводя централизацию информации, они исключают ошибки, вызванные несогласованностью применяемых версий, особенно если действуют совместно с программой make. Весьма важно разбить данные и подпрограммы на файлы таким образом, чтобы они не были видимы, если в этом нет необходимости.

Хотелось бы отметить, что из-за ограниченного объема книги мы мало внимания уделили тем средствам UNIX, которые применяются при разработке семейства программ hoc. Каждая версия программы находится в отдельном каталоге, для идентичных файлов используются связи; постоянно вызываются команды ls и du, чтобы следить за тем, какие файлы где находятся. На многие вопросы ответы дают сами программы. Например, на вопрос: "Где описана данная переменная?" отвечает программа grep. "Как мы внесли изменения в данную версию?" отвечает idiff. "Насколько велик файл?" отвечает wc. Пора делать копию файла обратитесь к команде cp. Нужно скопировать только те файлы, которые изменились со времени последнего копирования? Вам поможет в этом деле программа make.

Такой общий подход типичен для повседневной разработки программ в системе UNIX: множество небольших программных средств, каждое в отдельности или их различные сочетания, позволяет автоматизировать работу, которую иначе пришлось бы выполнять вручную.

Историческая и библиографическая справка

Программа yacc создана С. Джонсоном. Класс языков, для которых yacc может создавать программу разбора, называется LALR-(1): разбор здесь ведется слева направо и входной поток просматривается не более чем на одну лексему вперед. Понятие раздельных описаний для задания приоритетов и разрешения неоднозначностей в грамматике появилось вместе с yacc. Этот вопрос рассматривается в статье А. В. Ахо, С. К. Джонсона и Д. Д. Ульмана "Deterministic parsing of ambiguous grammars" (CACM, August, 1975). Там же приведены новые алгоритмы и структуры данных для создания и хранения таблиц разбора.

Основы теории, на базе которой построены yacc и другие программы анализаторы, излагаются в книге А. В. Ахо и Д. Д. Ульмана "Principles of Compiler Design" (Addison Wesley, 1977). Сама программа yacc описана в справочном руководстве по UNIX (том 2B). В этом разделе также представлен калькулятор, сравнимый с hoc2: для вас такое сравнение может оказаться полезным.


Брайан Керниган читать все книги автора по порядку

Брайан Керниган - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


UNIX — универсальная среда программирования отзывы

Отзывы читателей о книге UNIX — универсальная среда программирования, автор: Брайан Керниган. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.