Вот такой примерно ответ ожидают интервьюеры Microsoft. Более краткий ответ предлагается на веб-сайте acetheinterview.com: «Я выйду из библиотеки, отыщу человека, придумавшего этот вопрос, и дам ему оплеуху».[150]
Допустим, вы поступили работать в правительственное агентство по сбору налогов(IRS).Ваше первое задание — проверить, честно ли платит налоги фирма, предоставляющая услуги нянь для детей. Как вы выполните это задание?Есть два основных способа, которые используются в мире бизнеса для ухода от налогов: преувеличение расходов и преуменьшение доходов. В налоговой декларации фирмы она заявляет о своих доходах и расходах. Вам нужно найти какой-то способ проверить эту информацию, воспользовавшись независимыми источниками, и, если она окажется несоответствующей действительности, организовать более тщательную дополнительную проверку.
Нет проблем с оценкой расходов фирмы. IRS обычно достаточно хорошо представляет, сколько фирма определенного размера в той или иной отрасли бизнеса может потратить на канцелярские принадлежности и оплату телефонных счетов, на аренду офиса и зарплаты работников, на рекламу и свой сайт в Интернете. Если есть какие-то сомнения, их легко разрешить во время визита в фирму — сразу станет ясно, верна ли информация о количестве сотрудников фирмы и арендной плате. Труднее проверить информацию о доходах. Фирма по предоставлению услуг нянь находит желающих получить такую работу и направляет их в семьи, получая плату за услуги нянь от родителей детей, за которыми няни присматривают, и выплачивая няням зарплату. После этого всю ответственность за уплату налогов несут семьи-наниматели и сами няни. Семьи обязаны заполнить форму W-2 и уплатить налог в фонд страхования по безработице.
Это дает один из возможных способов проверить работу фирмы, предоставляющую услуги нянь, при помощи данных, уже имеющихся в распоряжении IRS. Для этого, пользуясь налоговыми формами W-2 и 1040, можно составить список нянь, работающих в данном районе. Сравнив эти данные за прошлый год по тем же формам W-2 и 1040, IRS может определить, сколько новых нянь появилось за прошедший год.
Разумно предположить, что большинство из них работает через агентства. Конечно, есть опытные няни с хорошими рекомендациями, которые переходят из семьи в семью, которых рекомендуют своим знакомым родители подросших детей, кроме того, заботу по присмотру за детьми берут на себя бабушки и другие родственники, которым иногда платят за это, иногда нет, но в любом случае сведения об этом не поступают в IRS. Но большинство родителей, которым нужна няня, а друзья и знакомые не могут им никого посоветовать, скорее всего обратятся в агентства. Никто не захочет доверять своего ребенка незнакомцу, который не прошел никакой проверки.
Таким образом, почти каждая начинающая няня получает зарплату в какой-то фирме, предоставляющей услуги нянь. Если та фирма, деятельность которой расследуется, единственная в данном регионе, она получит почти весь доход. Если в данном регионе работает несколько подобных агентств, вам нужно будет рассчитать, как доход от работы новых нянь распределяется между этими фирмами (но имейте в виду, что вам нужно будет получить и проанализировать данные обо всех этих фирмах).
Таким образом, можно провести независимую проверку доходов фирмы, предоставляющей услуги нянь, если предполагается, что и семьи и няни честно предоставляют информацию в налоговое ведомство. А если нет?
Ну, не забывайте, что это как раз обязанность IRS — проверять, насколько честны люди. Вы можете воспользоваться для сравнения известными данными о том, какая доля людей честно платит налоги. Например, если известно, что примерно 90 процентов нянь честно сообщают о своих заработках и 10 процентов скрывают их, вы можете соответствующим образом скорректировать ваши оценки в сторону повышения. Вы анализируете поведение только одного агентства и большого количества нянь — это значит, что по закону больших чисел доля нянь, честно платящих налоги в регионе, будет близка к этому среднему проценту.
У вас восемь бильярдных шаров…Весы, которыми вы должны воспользоваться, такие же, как весы в руке у богини правосудия Фемиды. Они могут только показать, какая из двух чаш весов тяжелее, но вы не сможете узнать, насколько.
Очевидное решение не подходит. Если вы положите на каждую чашку весов по четыре шара, то вы узнаете, в какой из четверок дефектный тяжелый шар. Потом, если вы еще раз поделите эту четверку пополам и положите на каждую чашку по два шара, вы найдете «двойку», в которой есть дефектный шар. Но в этом случае вы уже использовали два разрешенных взвешивания, а дефектный шар еще не найден. Вы не сможете определить, какой из двух «подозреваемых» шаров тяжелее.
Решение возможно, если вы используете еще одну полезную особенность весов: если вес двух групп шаров одинаков, чаши весов уравновесятся. Если это произойдет, вы можете сделать вывод, что среди взвешенных шаров нет дефектного.
Во время первого взвешивания положите по три любых шара на каждую чашку весов. Возможно два разных исхода.
Первый — чаши могут уравновеситься. В этом случае дефектный шар — это один из тех двух шаров, которые вы не взвешивали. Поэтому во время второго и последнего взвешивания вы кладете на весы эти два шара — более тяжелый и есть дефектный.
Другой возможный исход первого взвешивания: одна из двух чашек весов оказывается тяжелее. Дефектный шар должен быть на этой перевесившей чашке весов. Во втором взвешивании вы сравниваете любые два шара из этой тройки. Если один из них оказывается тяжелее, чем другой, — это и есть дефектный шар. Если шары одинакового веса — дефектный шар тот, который вы не взвешивали.
Эта головоломка хорошо известна во всем мире. Она была, например, опубликована в 1956 году в книге Бориса Кордемского «Математическая смекалка», которая была бестселлером в Советском Союзе времен «холодной войны».[151]
Если у вас пять баночек с таблетками…В данном случае у вас весы, которые показывают вес (а не весы без гирь, о которых шла речь в задаче о биллиардных шарах).
В реальной жизненной ситуации вы, наверное, просто взвешивали бы по одной таблетке из каждой баночки, пока не обнаружили бы ту, которая весит 9 граммов, но вы не можете так поступить, поскольку разрешается только одно взвешивание. Шансов на то, что вам в первом же взвешивании попадется дефектная таблетка, один из пяти.
Это значит, что вам нужно одновременно взвешивать таблетки не из одной баночки, а из нескольких. Рассмотрим простейший случай: вы взвешиваете пять таблеток, по одной из каждой баночки. Тогда итоговый вес обязательно окажется 10+ 10 + 10+ 10 + 9 = 49 граммов. Проблема в том, что это можно узнать и без всякого взвешивания. Это никак не поможет вам узнать, из какой баночки вы взяли дефектную 9-граммовую таблетку.
Вам нужно придумать такую ситуацию, в которой вес таблеток был бы информативным. Одно из решений — пронумеровать баночки № 1, № 2, № 3, № 4, № 5. Потом вы кладете на весы одну таблетку из баночки № 1, две — из № 2, три из № 3, четыре из № 4 и пять из № 5. Вы взвешиваете одновременно все эти таблетки. Если бы все таблетки были нормального веса, то результат был бы 10 + 20 + 30 + 40 + 50 = 150 граммов. На самом деле вес будет меньше, причем на количество граммов, которое соответствует номеру баночки с испорченными таблетками. Например, если общий вес будет 146 граммов (на 4 грамма меньше), это значит, что более легкие дефектные таблетки — в баночке № 4.
Альтернативное решение позволяет определить дефектную бутылку, взвесив меньше таблеток: 1 + 2 + 3 + 4 таблеток из первых четырех баночек. Тогда если вес окажется меньше 100 граммов, то количество граммов, которого не хватает до 100, укажет вам номер дефектной баночки. Если же вес будет ровно 100 граммов, это означает, что дефектные таблетки в пятой баночке.
После того, как вы найдете правильный ответ, вы можете спросить интервьюера о том, для кого предназначаются эти таблетки. Хороший ответ на этот вопрос — «для лошади». 10-граммовая таблетка весит в тридцать раз больше, чем обычная (325 миллиграммов) таблетка аспирина.
Эта головоломка (правда, речь шла о взвешивании монет) упоминалась Мартином Гарднером в его колонке в журнале Scientific American в середине 1950-х. Гарднер описывал ее как «новую и элегантную вариацию» задач о взвешивании, «популярных в последние годы».[152]
Три муравья находятся в трех углах равностороннего треугольника.Есть два способа движения, при котором муравьи не встретятся друг с другом: они все должны двигаться по часовой стрелке или все против часовой стрелки. В противном случае встречи им не избежать.
Выберите одного муравья и назовите его, например, Биллом. После того, как Билл решил, в какую сторону двигаться (по часовой стрелке или против часовой стрелки), другие муравьи должны двигаться в том же направлении, чтобы не столкнуться. Поскольку муравьи принимают решение случайным образом, шансы на то, что второй муравей направится в ту же сторону, что и Билл, — один из двух, аналогично и для третьего муравья эта вероятность такая же. Это значит, что вероятность избежать столкновения — один из четырех.