Впрочем, после испытаний в России 11 сентября 2007 года боеприпаса объемного взрыва, обозванного "Папа всех бомб" и превосходящего MOAB по мощности вроде бы вчетверо, США тоже решили пополнить "вакуумный" арсенал. Ждем прибавления в дружной семье?
Автор: Юрий Ревич
Невозможно назвать ни одну область человеческой деятельности, которую бы не затронул технический прогресс с его ошеломляющими темпами. Причем о революционных преобразованиях, касающихся повседневного быта миллионов людей, мы узнаем фактически в реальном времени - о существовании электронной почты, мобильной связи или цифровой фотографии осведомлен любой человек, даже ни разу в жизни не державший в руках "Компьютерру". Но есть такие сферы деятельности, где изменения гораздо меньше заметны широкой публике, однако их значимость от этого ничуть не меньше. К таким сферам, безусловно, относится 3D-печать.
Нечастые сообщения в СМИ о новых технологиях изготовления трехмерных моделей "вживую", в пластике или металле, своей тональностью обычно лишь свидетельствуют о непонимании журналистским сообществом всей глубины революционных преобразований в этой области. То, что технологии 3D-печати уже перестали быть просто игрушкой для дизайнеров и художников, доказала фирма Lockheed Martin, продемонстрировавшая на аэрошоу в Англии в 2006 году беспилотник-невидимку P-175 Polecat. Львиная доля элементов конструкции этого сверхзвукового аппарата с размахом крыльев 27 метров была изготовлена на 3D-принтерах. Впрочем, большинство современных технологий 3D-печати уходят корнями в конец 1980-х годов.
Лазерные: SLA и другие
Первой использовавшейся на практике технологией для автоматического изготовления физических моделей из пластика по компьютерным "чертежам" была стереолитография (SLA), придуманная американским инженером Чарльзом Халлом еще в 1986 году. Халл основал компанию 3D Systems, которая и поныне является одним из главных производителей 3D-принтеров.
Принцип стереолитографии заключается в использовании фотополимера в жидком состоянии, поверхность которого отверждается лучом УФ-лазера в соответствии с рисунком текущего слоя (здесь обычно добавляют, что подобные фотоотверждаемые полимеры издавна применяются дантистами для пломбирования зубов). Рисунок получается послойной "нарезкой" исходной компьютерной 3D-модели с помощью специального софта. После формирования текущего слоя стол с моделью опускается на толщину слоя, а поверхность с помощью специального выравнивателя опять заливается жидким полимером, из которого формируется следующий слой [1]. Готовый образец промывается, дабы удалить остатки полимера, и некоторое время выдерживается под УФ-лампой для окончательного затвердевания.
На SLA-принтерах можно печатать довольно крупные изделия (до 75 сантиметров по максимальному габариту). Такой принтер даже с не очень большим рабочим объемом (например, 250х250х250 мм) представляет собой внушительное устройство величиной со шкаф и весом полтонны. Современные SLA-принтеры имеют самую высокую точность среди своих собратьев (так, аппараты от 3D Systems позволяют выдержать толщину слоя в одну-две тысячные дюйма - 0,025–0,05 мм), в них получаются гладкие и прочные модели с отличной проработкой мелких деталей. Недостатки их - крайняя медлительность (скорость роста образца - несколько миллиметров в час по высоте заготовки), ограниченный ассортимент исходных материалов и дороговизна. Цена таких принтеров обычно не указывается (ибо продаются они поштучно), но, порывшись в Сети, можно узнать, что для модели Viper SLA (не самой дешевой, правда) она начинается от 150 тысяч евро. Видимо, по этой причине SLA-продукты 3D Systems в нашей стране не очень популярны.
Версия SLA-технологии под названием SGC (Solid Ground Curing) работает гораздо быстрее, но и с несколько меньшим разрешением. В первоначальном варианте, разработанном израильской фирмой Cubital еще в 1987 году, процесс напоминал ксерокопирование: на специальном стекле с помощью тонера формируется маска текущего слоя, через которую фотополимер засвечивается уже не лазером, а УФ-лампой сразу по всей поверхности. В современной модификации вместо маски используют DLP-матрицу, как в проекторах изображений. Такой SGC-аппарат (например, Perfactory от немецкой фирмы EnvisionTEC) может иметь скорость печати до 20 мм/час и разрешение по высоте (минимальную толщину слоя) 0,1 мм. Стоит Perfactory (за рубежом) около 55 тысяч евро.
Недостатка, заключающегося в специфичности и дороговизне исходного материала, лишены лазерные 3D-принтеры, использующие технологию спекания (Selective Laser Sintering, SLS). Метод был запатентован в 1989 году выпускником Техасского университета Карлом Декардом. SLS-принтер устроен гораздо проще, чем SLA: луч лазера плавит предварительно подогретый почти до температуры плавления порошок, формируя рисунок слоя. После его застывания насыпается очередная порция порошка, и формируется следующий слой. Очевидное преимущество такого подхода - возможность использования почти любого термопластичного материала, от полимеров до воска. Кроме того, модели, изготовленные по такой технологии, считаются самыми прочными. Разрешение SLS меньше, чем у SLA, а скорость работы выше (например, для принтеров EOSINT немецкой фирмы EOS толщина слоя - 0,1–0,15 мм, скорость формирования слоев - до 35 мм/час). Недостатки - поверхность изделий получается шероховатой, и требуется относительно большое время подготовки к работе, то есть для нагрева исходного полимера и стабилизации температуры.
Зато SLS-принтеры обладают одним очень полезным свойством: они позволяют "печатать" металлические изделия. Делается это при помощи специального порошка, представляющего собой стальные частицы, покрытые полимером. Модель, изготовленная на принтере из порошка, помещается в печь, где пластик выгорает, а поры заполняются легкоплавкой бронзой, в результате получается очень прочное композитное изделие. Есть также порошки на основе стекла или керамики, из них получают термостойкие и химически стойкие детали.
Традиционно в обзорах 3D-принтеров упоминается LOM-технология (Laminated Object Manufacturing), изобретенная Михаилом Фейгеном еще в 1985 году. Здесь лучом лазера раскраивают листовой материал, в качестве которого может выступать что угодно (бумага, ламинат, металлическая фольга и даже керамика), а затем нагреваемые валки склеивают полученные слои друг с другом. Недостатки метода понятны: грубая поверхность изделий, возможность расслоения и ошибок при не полностью прорезанном листе. Зато можно без проблем удалить испорченные слои и сделать их заново. Судя по результатам в поисковых системах (точнее, по их отсутствию), подобные принтеры уже не в моде, тем не менее на сайте фирмы Landfoam можно увидеть восхитительные образчики ландшафтов и архитектурных объектов, изготавливающихся по заказам с помощью подобной технологии.
К сожалению, повторимся, лазерные 3D-принтеры любого типа очень дороги: так, цена SLS-устройств фирмы EOS, которые даже трудно назвать принтерами из-за их размеров, вполне может достигать миллиона долларов. А вот цены другой разновидности 3D-принтеров - струйных - становятся все демократичнее.
Струйные
Самый очевидный струйный способ 3D-печати: выдавливание жидкого полимера на поверхность заготовки. Таким образом работает технология FDM (Fused Deposition Modeling), идея которой принадлежит Скотту Крампу, основателю компании Stratasys. Первый принтер по технологии FDM был выпущен в 1991 году. Сейчас Stratasys выпускает несколько разновидностей FDM-принтеров, из которых наиболее известна у нас серия Dimension (по названию одноименного подразделения компании). Машины Dimension - одни из самых дешевых среди 3D-принтеров, цена моделей начального уровня опускается ниже $20 тысяч, а в январе Dimension анонсировала "персональный" 3D-принтер uPrint дешевле $15 тысяч. Впрочем, более "продвинутые" FDM-устройства (вроде FDM Titan) могут стоить и вдесятеро больше. Что же нам предлагают за эти деньги?
FDM-принтеры используют нить термопластичного пластика (в дешевых Dimension применяется менее прочный и стойкий полистирол АВС, в более дорогих - поликарбонат РС), которая расплавляется и через фильеру укладывается печатающей головкой на поверхность образца [2]. Так как тонкие нависающие элементы могут деформироваться в процессе печати, в головке предусмотрена вторая фильера, при необходимости автоматически формирующая элементы поддержки. Из готового изделия эти элементы вымываются водным раствором в ультразвуковой ванне. Изделия получаются гладкими и прочными, однако точность изготовления невелика: лучшие FDM-модели имеют толщину слоя 0,127 мм, рядовые - 0,178 мм и более. Кроме того, процесс довольно медленный.
В принципе FDM-принтеры позволяют получать многоцветные образцы (стандартно доступно до семи цветов пластика, или любой другой цвет по специальному заказу), но для этого нужно менять картридж с нитью по ходу работы. Заметное достоинство принтеров от Stratasys - способность работать по принципу plug&play, все операции предельно автоматизированы. Говорят, NASA рассматривает технологию FDM в качестве кандидата на "космическую фабрику".