Бэббедж назвал «Аналитической машиной» (Analitical Engine), должна была проводить вычислительный процесс, заданный любыми математическими формулами. Бэббедж весь отдался конструированию своей новой машины, однако к моменту его смерти она так и не была закончена. Сын Бэббеджа завершил строительство некоторой части машины и провел успешные опыты по применению ее для вычислений некоторого рода. Подробнее о Ч. Бэббедже и его машинах см.:
Бут Э. и Бут К. Автоматические цифровые машины / перев. с англ. М.: Физматгиз, 1959. С. 18–21;
Hartree D.R. Calculating Instruments and Machines, Cambridge, 1950, chapter 9: «Charles Babbage and the Analitical Engine».
Люкасовская кафедра в Тринити-колледже основана в 1663 г. на средства, пожертвованные Генри Люкасом. Первым люкасовским профессором был учитель Ньютона Барроу, вторым – сам Ньютон. Получение этой кафедры, сохранившейся до нашего времени, считалось всегда большой честью. В настоящее время ее занимает Дирак.
Манчестерская машина была построена в Манчестерском университете (Англия) в конце 40-х годов. Конструирование машины происходило под руководством Вильямса (F.С. Williams) и Килберна (Т. Kilburn). В разработке и отладке машины принимал участие Тьюринг, который с этой целью в 1948 г. был приглашен в Манчестерский университет. Тьюринг занимался математическими вопросами, связанными с Манчестерской машиной, и особенно вопросами программирования (см.: Biographical Memoirs of Fellows of the Royal Society, v. 1, London, 1955, p. 254–255). Описание Манчестерской машины см. в кн.: Faster than Thought. A Symposium on Digital Computing Machines. Ed. by B.V. Bowden, London, 1953, chapter I.
Gоdеl К. Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme, I, «Monatshefte fur Mathematik und Physik». B. 38, 1931. S. 173–198.
Jeffеrsоn G. The Mind of Mechanical Man. Lister Oration for 1949 // Britisch Medical Journal, v. I, 1949, p. 1105–1121.
Листеровские чтения. Джозеф Листер (1827–1912) – выдающийся английский хирург.
Солипсистская точка зрения. Солипсизм (от лат. solus – единственный и ipse – сам) – взгляд, согласно которому единственной достоверной реальностью являются внутренние переживания субъекта, его ощущения и мышление. Солипсизм есть крайняя форма философии субъективного идеализма.
Viva voce (лат.) – устно. (Прим. ред.)
Принцип неполной индукции – принцип логики, согласно которому разрешается делать обобщающее заключение о принадлежности некоторого свойства а всем предметам данного класса А на основании того, что установлена принадлежность свойства а лишь некоторым (не всем) предметам класса А, именно тем, которые рассмотрены в ходе индукции. Вывод, основанный на принципе неполной индукции – даже при условии достоверности исходных данных, – не достоверен, а только более или менее вероятен.
Выражение «неполная индукция» русского перевода соответствует выражению «scientific induction» (буквально: «научная индукция») английского оригинала. Такой перевод выбран потому, что выражение «научная индукция» употребляется у нас обычно не в том смысле, который имеет в статье Тьюринга выражение «scientific induction» (под «научной индукцией» в нашей литературе обычно понимают сложное рассуждение, основанное на совместном применении неполной индукции и дедукции, которое при определенных условиях – последние, впрочем, не уточняются – может давать достоверное заключение).
Леди Лавлейс, Ада Августа (Ada Augusta, the Countess of Lovelace) принадлежала к тем немногим современникам Бэббеджа, которые вполне оценили значение его идей. Она была дочерью английского поэта Байрона (родилась в 1815 г., умерла в 1852 г.). Лавлейс получила хорошее математическое образование, сначала под руководством своей матери, а потом под руководством проф. Августа де Моргана (Augustus de Morgan), одного из создателей математической логики. С Бэббеджем и его машинами она познакомилась еще в юности. В 1840 г. Бэббедж посетил Турин (Италия) и прочел там серию лекций. Идеи Бэббеджа заинтересовали одного из итальянских офицеров – Менабреа, который опубликовал их изложение в Bibliotheque Universelle de Geneve (№ 82, Oktober 1842). Лавлейс перевела на английский язык эту работу и опубликовала ее в Scientific Memoirs (ed. by R. Taylor, v. 3, 1842, p. 691–731), присоединив к ней обширные Примечания переводчика, более чем в два раза превосходившие по объему текст Менабреа. Эти Примечания относились к принципам работы Аналитической машины и ее применению и были высоко оценены Бэббеджем. См.: Faster than Thought. A Symposium on Digital Computing Machines. Ed. by B.V. Bowden. London, 1953, chapter I. В приложении к книге воспроизведены работа Менабреа в переводе Лавлейс (Sketch on the Analitical Engine invented by Charles Babbage, Esq. by L.F. Menabrea, of Turin, Officer of the Military Engineers) и работа самой Лавлейс (Notes by the Translator).
Hartree D.R. Calculating Instruments and Machines. New York, 1949.
Дифференциальный анализатор – вычислительная машина, разработанная В. Бушем (Vannevar Bush) и его сотрудниками в Массачусетском технологическом институте в Кембридже (США) в конце 20-х годов и предназначенная для решения широкого класса обыкновенных дифференциальных уравнений. Дифференциальный анализатор – машина непрерывного действия; при решении задач мгновенные значения переменных выражаются положениями вращающихся валов машины (с учетом числа сделанных валом полных оборотов и направления вращения). Первая модель машины была чисто механическим устройством. В дальнейшем дифференциальный анализатор был усовершенствован его автором и превратился в электромеханическую машину. См.: Буш В. и Колдвелл С. Новый дифференциальный анализатор // Успехи математических наук. Т. 1. Вып. 5–6 (15–16) (новая серия). М.; Л., 1946. С. 113–171; Hartree D.R. Calculating Instruments and Machines, Cambridge, 1950, chapters 2 and 3. В настоящее время разнообразные, главным образом электронные, машины непрерывного действия (они называются иногда также аналоговыми) получили широкое распространение. (Подробнее о машинах этого класса см.: Кобринский Н.Е. Математические машины непрерывного действия. М.: Гостехиздат, 1954.)
В этом абзаце автор разбирает логическую ошибку в рассуждениях своих оппонентов, привлекая понятие о распределенности терминов категорического силлогизма. Категорический силлогизм можно описать как рассуждение, в котором из данного в посылках отношения по объему двух каких-либо терминов (понятий) к третьему следует их отношение друг к другу. Примером силлогизма может быть следующий вывод: (а) все млекопитающие являются позвоночными; (б) все копытные животные являются млекопитающими; (в) значит, все копытные животные являются позвоночными. Здесь из отношения между понятиями млекопитающие и позвоночные (посылка (а)) и между понятиями копытные животные и млекопитающие (посылка (б)) выводится отношение между понятиями копытные животные и позвоночные, составляющее содержание заключения (в). Если в этом выводе заменить указанные понятия переменными A, В, С,