Сверлильщики появились в далеком геологическом прошлом. Источенные ими породы находят даже в докембрийских отложениях; и поныне они продолжают свою разрушительную работу. Сверлящая деятельность моллюсков фолад вызывает иногда катастрофические последствия (Елисеев, 2002, с. 258).
К биогенной миграции II рода можно отнести и перемещение самого живого вещества. Сюда относятся сезонные перелеты птиц, перемещения животных в поисках корма, массовые миграции животных. Естественно, что все эти разнообразные формы движения живого вызывают и транспортировку небиогенного вещества.
Как мы видели ранее, В. И. Вернадский подразделял процессы, осуществляемые в биосфере живым веществом, по характеру самих процессов.
Несколько иначе подошел к этому вопросу его современник – Н. А. Андрусов.
«Химическая деятельность организма вообще, имеющая геологическое значение, – писал Андрусов, – может быть сведена к двум категориям: во-первых, к образованию на наружной поверхности или внутри твердых выделений, способных сохраняться;во-вторых, к образованию жидких и газообразных выделений, способных вступать в различные химические реакции с окружающим неорганическим миром» (цит. по: Елисеев, 2002, с. 259).
Для понимания той работы, которую совершает живое вещество в биосфере, очень важными являются три основных положения, которые Владимир Иванович называл «биогеохимическими принципами». Обсудим этот вопрос подробнее в следующем разделе.
8.2. Биогеохимические принципы
В формулировке В. И. Вернадского биогеохимические принципы звучат следующим образом.
I принцип: «Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению».
II принцип: «Эволюция видов в ходе геологического времени, приводящая к созданию форм жизни устойчивых в биосфере, идет в направлении, увеличивающем биогенную миграцию атомов биосферы» (или в другой формулировке: «При эволюции видов выживают те организмы, которые своею жизнью увеличивают биогенную геохимическую энергию»).
III биогеохимический принцип: «В течение всего геологического времени, с криптозоя, заселение планеты должно было быть максимально возможным для всего живого вещества, которое тогда существовало» (1940, с. 185;1965, с. 283–286).
Для Вернадского первый биогеохимический принцип был тесно связан со способностью живого вещества неограниченно размножаться в оптимальных условиях. «Вихрь атомов», который представляет собой жизнь, по определению Жоржа Кювье, стремится к безграничной экспансии. Следствием этого и является максимальное проявление биогенной миграции атомов в биосфере.
Второй биогеохимический принцип, по существу, затрагивает кардинальную проблему современной биологической теории – вопрос о направленности эволюции организмов. По мысли В. И. Вернадского, преимущества в ходе эволюции получают те организмы, которые приобрели способность усваивать новые формы энергии или «научились» полнее использовать химическую энергию, запасенную в других организмах. В ходе биологической эволюции, таким образом, увеличивается «КПД» биосферы в целом. Второй принцип справедлив и в отношении деструктивной ветви. Например, если для биогенного разложения мхов и лишайников необходимы десятилетия, то для трав – месяцы (Зимов, Чупрынин, 1991, с. 63–64). Объяснение этого факта заключается в том, что прогрессивные растения больше содержат легко усваиваемых сахаров, азотистых соединений и меньше лигнина, целлюлозы и являются более совершенными консументами, деструкторами. Если мхи разлагаются простейшими, то в минерализации «высокооборотистых растений» принимают активное участие почвенная зоомасса и позвоночные (Зимов, Чупрынин, 1991, с. 63).
В. И. Вернадский первым стал исследовать жизнь как целое, как геологически своеобразное живое вещество, характеризующееся весом, химическим составом, энергией и геохимической активностью. Он подчеркивал, что за геологическую историю организмы, по-видимому, осваивали новые области планеты, приспосабливаясь к многообразным природным условиям и участвуя в их изменении. Одно из выражений геологической активности живого вещества – скорость размножения организмов. Она колеблется в широких пределах и в идеальных условиях(отсутствующих в природе) достигает скорости звука. Бактерия холеры, например, способна (теоретически) за тридцать часов покрыть сплошной пленкой всю поверхность планеты. Крохотная инфузория туфелька может за пять лет выработать массу протоплазмы, по объему в десять тысяч раз превышающую нашу планету. Одноклеточная водоросль диатомея за восемь дней способна образовать массу материи, равную объему Земли, а в течение следующего дня удвоить эту массу.
Скорость передачи жизни, геохимическую активность живого вещества, отраженную в способности к размножению, Вернадский выразил в виде формулы:
2πΔ = Nn,
где n – число дней с начала размножения, Δ – показатель прогрессии, для одноклеточных соответствующий числу поколений в сутки, Nn – число неделимых, существующих благодаря размножению через n дней (Вернадский, 2003, с. 67).
По подсчетам В. И. Вернадского, количество свободного кислорода в биосфере, равное 1,5 1021 г, есть число того же порядка, как и количество существующего и с ним неразрывно связанного живого вещества, исчисляемого в 1020-1021 г. В каждый момент на Земле существует около 1020 и более граммов живого вещества, которое постоянно разрушается и создается – главным образом, не ростом, а размножением. Поколения создаются в промежутки от десятков минут до сотен лет. Ими обновляется вещество, охваченное жизнью. То, которое находится в каждую минуту в наличии, составляет ничтожную долю созданного в году, т. к. колоссальные количества создаются и разрушаются даже в течение суток (Вернадский, 2003, с. 76).
И если справедлив первый биогеохимический принцип, т. е. непрерывное стремление живого вещества к экспансии, к максимальному проявлению жизни, то столь же должен быть справедлив и выраженный второй биогеохимический принцип
Таким образом, первый биогеохимический принцип свидетельствует об экстенсивном захвате вещества для метаболизма, а второй – об интенсивной стороне того же процесса, в историческом геологическом аспекте. Иначе говоря, количество жизни остается неизменным, а качество ее непрерывно повышается. Чисто схематически этот процесс можно было бы попытаться описать так.
Допустим, есть всего одна бактерия, она в соответствии с геометрической прогрессией размножения чисто теоретически, не имея ограничивающего давления других организмов, выйдет на свою стационарную константу размножения и сразу освоит всю поверхность планеты, ограничиваясь только ее физическими параметрами; второй организм, создавая с первым систему биосферы, отнюдь не расширит лог ареал, а охватит его же, довольствуясь вдвое меньшим физическим пространством для жизни. Третий – займет в нем же свою нишу, разделив физическое пространство на три. И так продолжается при дальнейшей дифференциации живого вещества биосферы. Биомасса растет, появляется, например, лес или гигантские водоросли, или крупные животные, они вовлекают все более разнообразные виды атомов вещества в круговорот жизни. Но количество охваченных атомов остается постоянным, как и количество жизни по отношению к массе планеты. А внутренняя емкость пространства, вероятно, увеличивается, или оно структурируется. Точно также справедлива и обратная мыслительная операции. Из сегодняшней развитой биосферы будем отнимать, в каком угодно порядке: по одному виду, или по классу или по экологической нише, или но иному признаку. Что будет происходить с объемом биосферы? Он будет оставаться постоянным, другие организмы будут заполнять объем, пока смогут выполнять функции биосферы. Отнимем какой-то последний организм, – и она погибнет сразу, целиком, как и наш организм и как любой другой.
В. И. Вернадский через понимание функций и их историческое движение, выраженное в первом и втором биогеохимических принципах, нашел стандарт биосферы. Если живое вещество его поддерживает, то он действует, и наоборот. В последнем случае нет и биосферы.
8.3. Законы экологии и их следствия
Огромное биоразнообразие флоры и фауны, которое сохраняется на протяжении многих веков было бы немыслимо без его подчинения законам экологии. Как известно, законом называют наличие внутренней причинно-устойчивой связи между явлениями или свойствами различных объектов, отражающей отношения между объектами. Если изменение одних процессов или явлений (причина) вызывает вполне определенное изменение других (следствие), то это означает проявление действия закона. Какие же законы присущи для биосистем?