13. Полупустая бочка есть не половина пустой бочки, а такая бочка, одна половину которой пуста, а другая — полна. Мы же рассуждали так, как будто слово «полупустая» значит «половина пустой бочки», а слово «полу-полная» — «половина полной». Не удивительно, что при таком неправильном понимании мы пришли к неправильному выводу.
14. Прежде чем решать задачу, задайте себе вопрос: чего больше — людей на свете или волос на голове одного человека? Разумеется, людей на свете неизмеримо больше, чем волос на голове. У нас их всего 150–200 тысяч, людей же на свете 1800 миллионов[1].
А если так, то непременно должны существовать люди с одинаковым числом волос! И не только во всем мире, но даже в каждом многолюдном городе, насчитывающем больше 200 тысяч жителей. В Москве 1,5 миллиона[2] жителей, и, значит, десятки москвичей должны иметь одинаковое число волос. Ведь не может же быть полутора миллиона различных целых чисел, среди которых ни одно не оказалось бы больше 200 000.
15. Обычно, не подумав, отвечают:
— Переплет стоит 50 коп.
Но ведь тогда книга стоила бы 2 руб., т. е. была всего на 1 руб. 50 коп. дороже переплета!
Верный ответ такой: цена переплета — 25 коп., цена книги — 2 руб. 25 коп.
16. Иванов, как ни странно, и теперь будет платить меньше, чем остальные покупатели платили до 1 января. Он имеет 20 %-ю скидку с цены, увеличенной на 20 %; другими словами, скидку 20 % от 120 %, т. е. платить он будет за книгу не 100 %, а всего лишь 96 % прежней ее цены. Трехрублевую книгу приобретет не за 3 руб., а за 2 руб. 88 коп.
17. Если бы все 26 голов на лугу были человеческие, мы насчитали бы не 82 ноги, а только 52, т. е. на 30 ног меньше. От замены одного человека лошадью число всех ног увеличилось бы на 2. Значит, чтобы насчитать 82 ноги, надо произвести подобную замену 15 раз, тогда и найдутся недостающие 30 ног. Итак, из 26 голов 15 принадлежало лошадям, а остальные 11 — людям.
18. 25 рублей можно отложить на счетах 25 косточками так, как показано на рис. 22.
Рис. 22. На конторских счетах 25 отложено двадцатью пятью косточками.
В самом деле, здесь отложено 20 руб. + 4 руб. + 90 коп. + 10 коп. = 25 руб. При этом использовано 2 + 4 + 9 +10 = 25 косточек.
19. Разве римляне, чеканя монету до P. X., могли знать, что через 53 года родится Христос?
20. Покупательница прогадала. Пучок с двойным обхватом заключает в себе не вдвое, а вчетверо больше спаржи, нежели тонкий (рис. 20). Женщина должна была либо заплатить вдвое меньше, либо же потребовать не два, а четыре тонких пучка.
21 Сколько прямоугольников
Сколько прямоугольников можете вы насчитать в этой фигуре (рис. 23)?
Рис. 23. Квадрат, разделенный на квадраты.
Не спешите с ответом. Обратите внимание на то, что спрашивается не о числе квадратов, а о числе прямоугольников — больших и малых, — какие только можно насчитать в этой фигуре.
Вы знаете, конечно, разницу между термометрами Реомюра и Цельсия (рис. 24)? Всегда ли градусы на термометре Реомюра больше, чем градусы на термометре Цельсия?
Рис. 24. Термометры Реомюра и Цельсия.
Шесть плотников и столяр нанялись на работу. Плотники заработали по 20 руб., столяр же — на 3 руб. больше, чем заработал в среднем каждый из семерых.
Сколько заработал столяр?
Напишите по порядку девять цифр:
1 2 3 4 5 6 7 8 9
Вы можете, не меняя расположение цифр, вставить между ними знаки плюс и минус таким образом, чтобы в сумме получилось ровно 100. Нетрудно, например, вставив + и — шесть раз, получить 100 таким путем:
12+ 3–4 + 5 +67+ 8 + 9 = 100
Если хотите вставить + и — только 4 раза, то тоже получите 100:
123 + 4–5 + 67–89 = 100
Попробуйте, однако, получить 100, пользуясь знаками + и — всего только три раза! Это гораздо труднее. И все же вполне возможно, надо только терпеливо искать решение.
В моем книжном шкафу стоят на полке сочинения Пушкина в 8 томах, том к тому. Приехав с дачи, я с досадой убедился, что летом книжный червь усердно сверлил моего Пушкина и успел прогрызть ход от первой страницы первого тома до последней страницы третьего.
Рис. 25. Собрание сочинений А. С. Пушкина в восьми томах и книжный червь.
Сколько всего страниц прогрыз червь, если в первом томе 700 страниц, во втором — 640, а в третьем — 670?
Вы, без сомнения, не раз уже обращали внимание на любопытную особенность равенств:
2 + 2 = 4
2 x 2 = 4
Это единственный пример, когда сумма и произведение двух целых чисел (и притом равных) одинаковы.
Вам, однако, быть может, неизвестно, что существуют дробные числа (правда, не равные), обладающие тем же свойством:
Попытайтесь подыскать другие примеры. Чтобы вы не думали, что поиски напрасны, скажу: таких чисел весьма и весьма много.
Хороший стрелок стоит у одного борта парохода, а у противоположного помещена мишень. Пароход движется в направлении, показанном на рис. 26 длинной стрелкой.
Стрелок прицелился совершенно точно. Попадет ли он в цель?
Рис. 26. Тир на палубе парохода.
На обыкновенных весах лежат: на одной чашке — булыжник, весящий ровно 2 кг, на другой — железная гиря в 2 кг. Я осторожно опустил весы под воду.
Остались ли чашки в равновесии?
Вы видите здесь деревянный куб, составленный из двух кусков дерева (рис. 27). Верхняя половина куба имеет выступы, входящие в выемки нижней части. Обратите внимание на форму и расположение выступов и объясните: как ухитрился столяр соединить оба куска?
Рис. 27. Хитроумное соединение в собранном виде.
Вы сидите в вагоне железной дороги и хотели бы узнать, с какой скоростью он мчится. Можете ли вы определить скорость по стуку колес?
21. Различно расположенных прямоугольников в этой фигуре можно насчитать 225.
22. Если речь идет о градусах температуры, то, конечно, градус Реомюра всегда больше градуса Цельсия — именно на 1/5 долю; поэтому, если в вашей комнате по Реомюру 16 градусов, то по Цельсию — 20.
Но это вовсе не значит, что на той дощечке термометра, на которой нанесены деления (на «шкале»), длина градусов у термометра Реомюра всегда должна быть больше, чем у термометра Цельсия. Длина деления зависит от того, сколько ртути в шарике термометра, и от толщины трубки. Чем больше ртути в шарике и чем тоньше канал трубки, тем выше поднимается ртуть в трубке при нагревании и тем больше промежуток между делениями шкалы. В этом смысле «градус» может иметь самую разную длину, и вполне понятно, что в термометре Реомюра такой градус может быть и меньше градуса в термометре Цельсия.
23. Легко узнать, каков был средний заработок семерых плотников. Для этого нужно избыточные 3 руб. разделить поровну между 6 плотниками и к 20 руб. каждого прибавить полученные 50 коп. Вычислили средний заработок плотника.
Отсюда узнаем, что столяр заработал
20 руб. 50 коп. + 3 руб., т. е. 23 руб. 50 коп.
24. Вот каким способом можете вы получить 100 из ряда девяти цифр и трех знаков + и —:
123 — 45–67 + 89 = 100
В самом деле:
123 + 89 = 212
45 + 67 = 112
212 — 112 = 100
Других решений задача не имеет. Впрочем, если у вас есть терпение, попытайтесь испробовать другие сочетания.
25. Казалось бы, надо просто сложить страницы трех томов — и задача решена. Но не спешите с решением. Обратите внимание на то, как стоят книги на полке и как расположены в них страницы.
Вы видите, что 1-я страница тома I примыкает к 640-й странице тома II, а последняя страница тома III находится рядом с первой страницей тома II.
И если червь проделал ход от 1-й страницы тома I до последней страницы тома III, то он прогрыз всего только 640 страниц среднего тома да еще 4 крышки переплета, не более.
Рис. 28. Сколько страниц и крышек переплета прогрыз книжный червь?
26. Существует бесчисленное множество пар таких чисел. Вот несколько примеров[3]