После выяснения, в каких подразделениях института есть подходящее оборудование, пришлось обратился в лабораторию, занимавшуюся регистрацией гамма-излучений ядерных взрывов. Подобные подразделения считались вспомогательными, не были избалованы вниманием начальства и их руководители стремились наладить прочные связи с подразделениями «основной тематики». «Нейтронная» тематика считалась основной, поэтому меня радушно приняли и рассказали о достижениях, в частности — о системе спектроскопии гамма квантов, показали огромные монокристаллы йодида цезия в специальных контейнерах и фотоэлектронные умножители, регистрирующие вспышки в кристаллах, порожденные гамма квантами. Подобное было памятно еще по институтским лабораторным работам, но здесь уровень аппаратуры был куда более высок, а контейнеры с самыми большими монокристаллами можно было поднять лишь обеими руками. Я вспомнил о существовании таких монокристаллов десятилетие спустя, а тогда стал задавать вопросы об ЭОПах. Оказалось, что и они имелись.
Настал и мой черед рассказать о задаче. Тут лица собеседников вытянулись от разочарования: тематика хотя и была «нейтронной», но не оружейной, а значит — не главной. Аппаратуру дать взаймы отказались, но компромисс был достигнут: разрешили, чтобы с ней работал их техник, «а уж вы с ним сами договоритесь». «Договаривались» в таких ситуациях при помощи спирта. Техник оказался веселым и знающим малым, наладив аппаратуру и получив, что причиталось, он заходил потом лишь изредка, проверяя только наличие всех приборов.
Технологические возможности института позволили изготовить конвертер (преобразователь нейтронного излучения в световое), смешав бор, сульфид цинка и «связав» смесь полиэтиленом. При захвате нейтронов ядрами бора получались альфа-частицы, которые и вызывали вспышки света в сульфиде цинка.
Вскоре начались плановые испытания генераторов на полный ресурс. «Гоняя» генераторы, попутно облучали патрон и не минуту, не час, а почти неделю! Результаты не радовали: на экране виделись лишь отдельные вспышки. Чтобы не подвергать риску быть «экспроприированным» фотоаппарат, срочно изготовили из фанеры кассету, прижимавшую к экрану кусок аэрофотопленки. И результат был получен: пленки, экспонированные при задержке запуска ЭОПа и без нее заметно отличались, что свидетельствовало об изменении средней энергии нейтронов, на которых велся контроль (рис. 3.6)! Низкоэнергетичные нейтроны позволили обнаружить и порох, что было недоступно для нейтронов быстрых, а уж тем более — для рентгена. Неважно, что изображения были получены после недельного коллекционирования отдельных вспышек! Неважно, что компоненты конвертера оказались смешанными явно неравномерно! Главное — работал принцип!. А если так, то, применив более мощный источник нейтронов (например — импульсный реактор), можно было, лишь «просветив» предмет снаружи, узнать не только его устройство, но и изотопный состав любой его детали по выбору: достаточно было укрепить на ее изображении фотоэлемент и получить зависимость его показаний от величины задержки запуска ЭОПа (а значит — и от энергий нейтронов). Ясно, что тут требовались сложные расчеты эффективности конвертера для нейтронов разных энергий, экранирования одного материала другим, по все эго было под силу ЭВМ, только входившим тогда в обиход научных учреждений…
Рис. 3.6. Нейтронограммы патрона, полученные на нейтронах разных энергий (при задержке запуска электронно-оптического преобразователя относительно нейтронного импульса и без нее). На верхней нейтронограмме, полученной без задержки запуска — на быстрых нейтронах — различимы только металлические детали. Медленные нейтроны дают возможность обнаружить, и заряд пороха, состоящего их «легких» элементов (азота, углерода, водорода, кислорода)
…В НИИ авиационной автоматики (НИИАА, позднее — ВНИИА) автор попал по распределению — для выполнения дипломной работы. Чтобы понять принципы действия «авиационной автоматики», вернемся к нашим сборкам.
Ранее упоминался U235, но ключевую роль во многих областях это вещество уступило плутонию — 239. Плутоний получают в реакторах, облучая «очищенный» от 235-го изотопа уран мощными нейтронными потоками. Далее следуют ядерные превращения, в результате в облученных «блочках» остается плутоний, который отличается от урана валентностью, что допускает его отделение химическими методами, но все равно стоит плутоний примерно в шесть раз дороже U235. Однако стоимость уступает по значению другим свойствам плутония. При делении ядро Pu239 испускает в среднем 2,895 нейтрона — больше, чем U235 (2,452). К тому же, в плутонии ниже сечения нейтронных реакций не вызывающих деления. Все это приводит к тому, что уединенный шар Pu239 становится критичным при почти втрое меньшей массе, чем шар U235, а главное — при меньшем радиусе, что очень важно, поскольку позволяет снизить габариты критической сборки.
Впрочем, еще один изотоп урана — «двести тридцать третий» — позволяет достичь критичности при массе сборок еще меньшей, чем в случае плутония, правда, ненамного. И получают его при облучении нейтронами тория, которого в земной коре содержится втрое больше, чем урана. Но U233 не вытеснил плутоний: уж очень интенсивно испускает гамма кванты сопутствующий ему изотоп с массовым числом 232, отделить который химически, как мы знаем, невозможно, а «отцеживать» в бесчисленных ступенях разделения — очень накладно. Брать в руки U233 — «чревато».
Известны и другие делящиеся изотопы. В 60-х годах из них грозились сделать «атомные пули»[20], но, когда их действительно выделили в осязаемых количествах и исследовали, оказалось, что существенных «оружейных» преимуществ перед плутонием они не имеют, а вот по стоимости — превосходят на порядки.
Итак, поверхность сборки (рис. 3.7), содержащей плутоний («черная сердцевина»), искусственно увеличивали, выполняя ее в форме шарового слоя (полой внутри) и заведомо подкритичной, даже — и для тепловых нейтронов, даже — и после окружения ее замедлителем (слой желтоватого цвета). Любителям испускать по каждому поводу гнусавые вопли о поругании секретности, сразу замечу, что эта схема описана Фиттером еще в конце пятидесятых. Плутониевую «сердцевину» всегда собирали из двух тщательно подогнанных половинок, разделять ее на «дольки апельсина», приходило в голову разве что журналистам. Вокруг сборки, из очень точно пригнанных блоков взрывчатки монтировали заряд, также образовывавший шаровой слой. Читатель и сам догадывается, для чего нужен взрыв: чтобы рвать, метать, деформировать. Но, чтобы сберечь нейтроны, надо и при взрыве хоть и уменьшить радиус сборки, но сохранить ее благородную форму шара, для чего — подорвать слой взрывчатого вещества одновременно по всей его внешней поверхности, чтобы обжать сборку равномерно, со всех сторон. Для этого служила детонационная разводка из поликарбоната — также в форме шарового слоя, плотно прилегающего к заряду взрывчатки.