MyBooks.club
Все категории

Г.И. Мишкевич - Доктор занимательных наук

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Г.И. Мишкевич - Доктор занимательных наук. Жанр: Биографии и Мемуары издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Доктор занимательных наук
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
13 август 2018
Количество просмотров:
167
Читать онлайн
Г.И. Мишкевич - Доктор занимательных наук

Г.И. Мишкевич - Доктор занимательных наук краткое содержание

Г.И. Мишкевич - Доктор занимательных наук - описание и краткое содержание, автор Г.И. Мишкевич, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга рассказывает о жизни и деятельности Я.И.Перельмана, основателя особого направления в научной популяризации - занимательного, инициатора создания в Ленинграде "Дома занимательной науки".

Доктор занимательных наук читать онлайн бесплатно

Доктор занимательных наук - читать книгу онлайн бесплатно, автор Г.И. Мишкевич

Тут, как говорится, задача в задаче. Распространенное мнение таково: дерево горит, когда большой жар. Но горение происходит при любой температуре! Чтобы ответить на вопрос о сроке горения, надобно знать «пятое действие арифметики» - возвышение в степень. Скорость реакции горения при 20 градусах в 258 раза меньше, то есть 1 грамм древесины сгорит за 258 секунд. Много это или мало? «Всего лишь» 10 миллиардов лет! Итак, дерево, уголь горят и при обычной температуре, не будучи вовсе подожженными. Гениальное открытие огня ускорило этот страшно медленный процесс в миллиарды раз.

В новелле «Замок с секретом» читателю предлагается детективная история: надо вычислить, сколько времени понадобится слесарю, чтобы открыть секретный замок сейфа, ключ от которого утерян. Дверь сейфа можно открыть, лишь установив определенным образом 5 дисков с 26 буквами на их краях (то есть подобрав нужный шифр). Алгебра и тут приходит на помощь: возможно 12 миллионов различных комбинаций подбора цифр. Считая по 3 секунды на каждую операцию, слесарю придется потрудиться над замком без малого четыре года.

Вот еще один алгебраический сюжет - он навеян медициной: «Необычайное лекарство» (о гомеопатических снадобьях). «Гомеопатические лекарства приготовляются так. Одну часть лекарственного настоя разбавляют в 99 частях спирта. И так далее - от 18 до 30 раз. Надо думать, что, назначая подобные дозы лекарства, гомеопаты никогда не пытались математически осознать то, что они делают. В противном случае получилось бы совершенно неожиданные результаты. Сколько лекарственного вещества наперстянки, употребляемой гомеопатами при лечении коклюша (30 разведений), содержится в пузырьке, полученном в аптеке? Оказывается, 1 кубический сантиметр лекарства растворен в 1060 кубических сантиметрах спирта. Что же это за объем такой - десять в шестидесятой степени? Даже Солнце с его объемом в 14·1017 кубических километров в 70 тысяч раз меньше того объема раствора, в котором содержится единственная молекула наперстянки!». Тут же следует парадоксальный поворот сюжета: «Если допустить, что даже одна молекула настоя способна исцелить от коклюша, то больной должен проглотить… 70 тысяч пилюль, каждая величиной с Солнце - порция для детского возраста несомненно чрезмерная…». (Сноска к этой медико-математической новелле гласит, что автором подсчета является не кто иной, как всемирно известный датский физик Нильс Бор.)

Яков Исидорович как-то рассказал, что к нему обратился знакомый парикмахер:

- У меня имеется 30-процентный и 3-процентный растворы перекиси водорода, но оба не годятся, так как нужен только 12-процентный. Сколько перепортил раствора, а нужный получить не могу.

- Дайте листок бумаги. Замелькали цифры, иксы, проценты.

- Возьмите два литра 3-процентного и один литр 30-процентного, смешайте, получите нужный раствор.

- Спасибо. Так все просто… За помощь одеколон бесплатно.

Прекрасно прокомментирована картина художника Н.П. Богданова-Бельского «Трудная задача» (находится в Третьяковской галерее). Крестьянские ребятишки, изображенные на полотне, стоят у классной доски, на которой выведено мелом:

(10в2 + 11в2 + 12в2 + 13в2 + 14в2) / 365 = ?

Задача, отмечает Перельман, в самом деле нелегкая, то только для тех, кто не искушен в алгебре. Числа, написанные на доске, обладают магическим свойством:

10в2 + 11в2 + 12в2 = 13в2 + 14в2.

Но сумма первых трех слагаемых равна 365. Следовательно, такова же сумма и вторых слагаемых. Ответ: 2. (Для любителей математики приведено сложное алгебраическое решение задачи.)

Рассказано в книге о легендарном индийском мудреце Сета и его задаче: «Положите на первую клетку шахматной доски одно пшеничное зерно, на вторую - два, на третью - четыре и т.д. Сколько зерен поместится на доске?».

Для решения этой задачи не хватило бы урожая пшеницы во всем мире за 2 000 лет.

С неослабевающим вниманием читается рассказ о завещании известного реакционера царедворца Аракчеева:

1. «Я, нижеподписавшийся, вношу в нынешнем 1863 г. пятьдесят тысяч рублей ассигнациями в Государственный заемный банк с тем, чтобы сия сумма осталась в оном 93 года неприкосновенно со всеми приращаемыми за оную в продолжение сего времени процентами, без малейшего ущерба и изъятия.

2. Сия сумма назначается в награду тому из российских писателей, который через сто лет от кончины в бозе почивающего венценосца, т.е. в 1925 г., напишет на российском языке Историю царствования императора всероссийского Александра I лучше всех…

7. Академия наук определяет награду за удовлетворительнейшую историю - три доли капитала с приращенными через 93 года процентами.

8. Остальная четвертая часть поступает в распоряжение Российской Академии наук…

13. Награда сочинителю состоять будет из миллиона четырехсот тридцати тысяч двухсот двадцати рублей; а четвертая часть, четыреста семьдесят девять тысяч семьсот сорок рублей, поступит в распоряжение Академии».

Итак, рассуждает математик Перельман, в банк было положено 50 тысяч рублей. Аракчеев назначил автору «истории» 1 430 220 рублей, а 479 740 рублей - Академии. Всего, стало быть, распоряжался капиталом почти в 2 миллиона рублей. Но откуда такая сумма? Неужто тогдашние банки платили за помещенный капитал громадные проценты? Нет, всего 4 процента. Суть в том, что 93 года - срок, вполне достаточный (вспомните алгебру), чтобы 50 тысяч превратились в 2 миллиона.

Завещанию мракобеса Аракчеева не суждено было исполниться: в 1917 году династия Романовых приказала долго жить…

«Занимательная астрономия»

Приступая к написанию этой книги (1929 г.; выдержала 11 изданий), ее автор отчетливо понимал, какую трудную задачу ему придется решать. Он предупреждает читателя: «Астрономия счастливая наука, она, по выражению Араго [26]] , не нуждается в украшениях. Однако наука о небе не всецело состоит из удивительных откровений и смелых теорий. Ее основу составляют факты обыденные, повторяющиеся изо дня в день… Будничная часть науки о небе, ее первые, а не последние страницы и составляют главным образом (но не исключительно) содержание «Занимательной астрономии». И хотя изложение по возможности освобождено от специальных терминов и от того технического аппарата, который часто становится преградой между астрономической книгой и читателем, все же без упражнений и расчетов не обойтись. Подобные упражнения не только прочнее закрепляют усваиваемые сведения, но и подготовляют к чтению серьезных сочинений».

В книге особенно широко используется метод неожиданного сопоставления масштабов, касающихся Вселенной. «К числу вещей, которые никак нельзя изобразить на бумаге, принадлежит точный план нашей Солнечной системы. Изберем для земного шара самую скромную величину - булавочную головку, т.е. пусть Земля изображается шариком около 1 миллиметра в поперечнике. Луну в виде крупинки диаметром 1/4 миллиметра надо будет поместить в 3 сантиметрах от булавочной головки. Солнце величиной в мяч (10 сантиметров) должно отстоять на 10 метров от Земли. Исполин Юпитер будет представлен шариком величиной с орех (1 сантиметр) и помещен в 52 метрах от Солнца-мяча. Планету Сатурн в виде орешка поперечником 8 миллиметров придется отодвинуть на 100 метров от Солнца. Уран в нашей модели отброшен на 196 метров от Солнца. В 300 метрах от центрального шара-Солнца медлительно совершает свой путь Нептун. Еще дальше обращается Плутон, расстояние до которого в нашей модели Вселенной выразится в 400 метрах».


Г.И. Мишкевич читать все книги автора по порядку

Г.И. Мишкевич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Доктор занимательных наук отзывы

Отзывы читателей о книге Доктор занимательных наук, автор: Г.И. Мишкевич. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.