MyBooks.club
Все категории

Александр Прищепенко - Шелест гранаты

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Прищепенко - Шелест гранаты. Жанр: Биографии и Мемуары издательство Моркнига,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Шелест гранаты
Издательство:
Моркнига
ISBN:
нет данных
Год:
2009
Дата добавления:
13 август 2018
Количество просмотров:
143
Читать онлайн
Александр Прищепенко - Шелест гранаты

Александр Прищепенко - Шелест гранаты краткое содержание

Александр Прищепенко - Шелест гранаты - описание и краткое содержание, автор Александр Прищепенко, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Эта книга об оружии, но не только — она открывает причудливую мозаику явлений физического мира: химические и ядерные взрывы, разделение изотопов и магнитная гидродинамика, кинетика ионов в плотных газах и ударные волны в твердых телах, физика нейтронов и электроника больших токов, магнитная кумуляция и электродинамика. Обо всем этом автор рассказывает, не прибегая к сложному аппарату высшей математики. Для тех, кто пожелает ознакомиться с этими явлениями подробно, им же написано рассчитанное на подготовленного читателя учебное пособие для университетов и военных академий «Взрывы и волны». В книге, которую держит в руках читатель, он найдет также исторические экскурсы, пронизанные иронией рассуждения о политике и политиках, а также — о персонажах замкнутого мира военной науки.

Шелест гранаты читать онлайн бесплатно

Шелест гранаты - читать книгу онлайн бесплатно, автор Александр Прищепенко

Хотя вода Ладоги была уже холодной (9-10 градусов), мы с удовольствием купались. Подплывали на шлюпке и к затопленным кораблям, стоявшим недалеко от берега (рис. 5.17). Это были германские тральщики, на них сохранились даже проржавевшие крупнокалиберные пулеметы. Все удивлялись, как корабли попали на Ладогу, и только много лет спустя я узнал, что такие экскурсии были небезопасны: корабли привели сюда по каналам с Новой земли, где они служили мишенями при испытаниях ядерного оружия, а значит, нейтроны ядерного взрыва должны были вызвать в их металле заметную наведенную активность.

Наконец, на остров доставили ракеты. Моряки не обманули: одна из них — ЗМ80 «Москит»[78] (рис. 5.18) была действительно новой, недавно принятой на вооружение, а вторая — «Термит» — модификацией уже знакомой П-15. Перед испытаниями арзамасцы, прибывшие со своими СВМГ, дали твердое обещание, что энергообеспечение нагрузки в 100 кДж («как в Черноголовке») они обеспечат при любых обстоятельствах, а, если надо — получат и на порядок большую энергию. К сожалению, свое слово они сдержали. Постарались и мы: в излучателях не было ни одного пробоя. Вследствие этих «достижений», не наблюдалось ни эффектов облучения в мишенях ни сигналов с антенн. В опытах сделали небольшой перерыв, вернулись с новыми сборками, снова загрохотали взрывы с тем же нулевым результатом. Испытания были провалены и «заслуга» эта принадлежала мне, как начальнику лаборатории.

Рис. 5.18. Выгрузка противокорабельной ракеты «Москит»

Главное — неясна была причина неудачи, ведь энергия в излучателе была «как в Черноголовке»! От мрачных мыслей отвлек звонок приятеля Н. Биюшкина, начальника сектора в НИИ авиационных систем, центральном институте авиационной промышленности: тот просил провести испытания стратегической крылатой ракеты Х-55, аналога американского «Томахока». Это была не очень выгодная мишень, потому что ее система наведения была инерциальной[79] но отказывать приятелю не хотелось. На испытания в подмосковный поселок Фаустово потащили несколько Е-14 (новых сборок), несколько Е-9 и довольно маломощную батарею конденсаторов.

Сборки Е-14, в которых начальный (и большой) ток в излучателях обеспечивали СВМГ, сработали без особого эффекта, но когда стали подрывать Е-9, начались сбои в бортовом компьютере ракеты. Группа Биюшкина фиксировала параметры облучения с помощью очень надежного прибора, предназначенного для регистрации электромагнитного импульса ядерного взрыва. Хотя им измерялась только низкочастотная составляющая излучения, не было никаких сомнений, что излучение сборок Е-14 уступало по мощности несравненно хуже обеспеченным энергией старомодным Е-9. В последний день испытаний, проходивших в тридцатиградусные морозы, Биюшкин уличил разработчиков ракеты в том, что они отсоединили перед опытами радиовысотомер, но это проявление «первого постоянно действующего фактора» не удивило.

Пожалуй, эти испытания были лучом надежды среди ложных успехов и явных провалов 1988 года!

Все подтвердилось в феврале 1989 г. в ходе испытаний в Арзамасе- 16, где был нащупан, наконец, оптимальный для излучения уровень энергии — менее килоджоуля!

5.10. Опыты со сверхпроводниками. Взрывы выбивают стекла и магнитное поле из железных пластин

В ходе февральской и апрельской сессий проводились не только нудные опыты по оптимизации ЦУВИ. Попросил о помощи Слепцов из НИИВТ: он хотел определить критические токи в создаваемых его лабораторией высокотемпературных сверхпроводниках — микронной толщины пленках из YBa2Cu3O7, нанесенных на подложки из искусственного сапфира. Как предполагал Слепцов, токи, при которых такие пленки должны переходить из разряда сверхпроводников в плохие изоляторы, составляли килоамперы. Но скачки сопротивления ведут к скачкам тока в контуре, что не может не сопровождаться существенным изменением магнитного момента, второй производной которого по времени, как известно, пропорциональна мощность РЧЭМИ. Пришлось попросить, чтобы пленки были напылены на сапфировые подложки в виде колец.

В опытах (рис. 5.19) одновитковый соленоид из меди 1 окружал кольцо 2. Оба погружались в жидкий азот 3, где кольцо и обретало сверхпроводимость. От арзамасского ВМГ снабженного узлом разрыва, в соленоиде 1 формировался импульс тока с коротким (в сотню наносекунд) фронтом. Индуктивность соленоида вначале мала, потому что внутри него находилась сверхпроводящая вставка, поэтому возрастание тока определяется только возможностями формирователя. Магнитное поле сосредотачивалось в узком зазоре между сверхпроводником и соленоидом: в сверхпроводник оно не могло проникнуть, потому что там индуцировался ток, полностью его компенсировавший, а в соленоид из меди хоть и проникало, но — медленно. Когда же ток в сверхпроводнике превышал критическое значение, возникал фазовый переход, по одну сторон которого пленка была еще сверхпроводящей, а по другую — проводила плохо. Фронт перехода двигался от периферии кольца к его оси и оказалось, что скорость его довольно велика (десяток километров в секунду или — сантиметр в микросекунду), но слабо зависит от индукции внешнего магнитного поля. Это позволяло за те доли микросекунды, пока магнитное поле «ест» сверхпроводимость имевшего ширину в несколько миллиметров кольца, успеть «накачать» существенную энергию в соленоид. Когда же фронт фазового перехода достигал внутренней границы кольца, ток, а значит, и магнитный момент менялись очень быстро. Оказалось, что эмиссия РЧЭМИ существенна, хотя и уступает по мощности излучению ЦУВИ почти два порядка.

Ценность сверхпроводникового излучателя состояла в том, что его можно было сделать невзрывным (например, получив импульс тока в соленоиде от кабельного формирователя), и в этом качестве использовать для исследований воздействия сверхширокополосного РЧЭМИ на электронику в лабораторных, а не полигонных условиях, что во многих случаях более удобно.

Результаты опытов по определению критических токов в сверхпроводниках были представлены на конференции в Самарканде. Был представлен на международной конференции и доклад об излучателе.

В новом ЦУВИ — сборке Е-23 — УВ в рабочем теле (РТ) создавалась уже не контактной детонацией, а ударом сжимаемого взрывом лайнера. Схему этой сборки, на взгляд автора, приводить излишне: Достаточно открыть рис. 4.21 главы 4 и представить, что на оси катушки, поддерживаемое двумя фланцами, располагается цилиндрическое рабочее тело. Взрыв сжимал катушку, выполняя две функции: дополнительного увеличения магнитного поля (рис. 5.20) и формирования сходящейся волны в РТ. Сборки Е-23 работали не без сбоев, но показали хорошие результаты.


Александр Прищепенко читать все книги автора по порядку

Александр Прищепенко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Шелест гранаты отзывы

Отзывы читателей о книге Шелест гранаты, автор: Александр Прищепенко. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.