MyBooks.club
Все категории

Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет. Жанр: Публицистика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
21 февраль 2019
Количество просмотров:
152
Читать онлайн
Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет

Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет краткое содержание

Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - описание и краткое содержание, автор Нейт Сильвер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Мы считаем, что наш мир во многом логичен и предсказуем, а потому делаем прогнозы, высчитываем вероятность землетрясений, эпидемий, экономических кризисов, пытаемся угадать результаты торгов на бирже и спортивных матчей. В этом безбрежном океане данных важно уметь правильно распознать настоящий сигнал и не отвлекаться на бесполезный информационный шум.О том, как этому научиться, рассказывает Нейт Сильвер, политический визионер и гуру статистики, разработавший систему прогнозов, позволившую дважды максимально точно предсказать результаты президентских выборов почти во всех штатах Америки. Его книга во многом близка исследованиям Нассима Талеба и столь же значима для всех, кто имеет дело с большими объемами данных и просчитывает различные варианты развития событий. И если Талеб говорит о законах зарождения «черных лебедей», Сильвер исследует модели и способы, позволяющие поймать этих птиц в расставленные нами сети. Он обобщает опыт экспертов-практиков, изучает различные модели и подходы, позволяющие делать более точные прогнозы. Как и Даниэль Канеман, автор бестселлера «Думай медленно… Решай быстро», наблюдая за поведением и мышлением людей, оценивающих неопределенные события, Сильвер утверждает: да, компьютеры незаменимы при работе с огромными массивами данных, но для максимальной точности результатов необходим гибкий человеческий ум и опыт, ведь прогнозирование – это планирование в условиях неопределенности.

Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет читать онлайн бесплатно

Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - читать книгу онлайн бесплатно, автор Нейт Сильвер

Но давайте вместо этого предположим, что на рынке присутствует некий общий фактор, от которого зависит судьба всех домовладельцев. Например, на жилищном рынке возник огромный пузырь, заставляющий цены на дома вырасти на 80 % без какого-либо значительного улучшения фундаментальных экономических показателей. У вас возникает проблема: если один заемщик оказывается в состоянии дефолта, то с подобными проблемами могут столкнуться и все остальные. Риск потери вашей ставки возрастает многократно.

Именно этот последний сценарий и начал разыгрываться в Соединенных Штатах в 2007 г. (чуть позже в этой главе я расскажу о развитии пузыря на жилищном рынке более детально). Однако рейтинговые агентства сделали ставку на свое прежнее предположение об отсутствии корреляции между рисками. Хотя неоднозначность этого предположения описывалась в научной литературе{87} и о ней говорили некоторые бдительные сотрудники рейтинговых агентств{88} задолго до того, как пузырь на жилищном рынке лопнул, рейтинговые агентства практически ничего не сделали для исправления ситуации.

Например, Moody’s в течение некоторого периода времени производило косметические корректировки своей модели{89}, в частности повысило вероятность дефолта ценных бумаг с рейтингом AAA до 50 %. Это могло показаться вполне разумным – неужели буфера в 50 % недостаточно для того, чтобы сгладить все шероховатости в наших предположениях?

Все было бы хорошо, если бы вероятность ошибки в прогнозах изменялась бы линейно и рассчитывалась арифметически. Однако «леверидж», или инвестиции за счет долговых обязательств, значительно увеличивают вероятность неточного прогноза, что приводит к возникновению массы нелинейных ошибок. По сути, 50 %-ная корректировка, сделанная Moody’s, напоминала ситуацию, при которой вы используете солнцезащитный крем и утверждаете, что он способен защитить вас от поражения при ядерном взрыве. Иными словами, решение проблемы такого масштаба оказалось совершенно неадекватным. И дело не в том, что риск дефолта в 50 % был слишком низким, – с таким же успехом они могли недооценить его на 500 или 5000 %. Практика показала, что вероятность дефолта оказалась в 200 раз больше, чем заявляли рейтинговые агентства, – иными словами, их модель ошиблась на 20 000 %.

В более широком смысле проблема рейтинговых агентств состояла в их неспособности или нежелании разобраться в различии между риском и неопределенностью.

Риск, как впервые отметил экономист Фрэнк Х. Найт в 1921 г.{90}, предполагает, что его можно оценить. Предположим, вы планируете выиграть партию в покер при условии, что ваш оппонент не соберет так называемый «дырявый стрит» (то есть в его распоряжении до какого-то момента есть все карты для формирования комбинации «стрит», кроме одной недостающей в центре последовательности[13]). Шансы на то, что на столе окажется нужная карта, составляют точно 1 из 11{91}. Это и есть оценка риска. Конечно, такие ситуации всегда неприятны, однако вы, по крайней мере, знаете вероятность ее возникновения и можете это спланировать заранее. В долгосрочной перспективе вы сможете обыграть своих оппонентов, делающих отчаянные ставки на слишком малую вероятность благоприятного для них события.

Неопределенность же представляет собой риск, который сложно измерить. У вас может иметься некоторое расплывчатое представление о возможных неприятностях. Вы даже способны четко представить, в чем они заключаются. Однако вы не знаете ни сколько их, ни когда они могут проявиться. Ваша предварительная оценка вероятности может отличиться от истинной в 100 или даже 1000 раз; вы просто не можете произвести расчеты более точно. Это и есть неопределенность. Риск выступает смазкой для колес локомотива экономики свободного рынка; неопределенность заставляет их тормозить.

Алхимические действия рейтинговых агентств были направлены на то, чтобы превратить неопределенность в нечто, напоминающее рассчитываемые риски. Они брали никому не известные ценные бумаги с высокой степенью системной неопределенности и заявляли о своей способности дать количественную оценку их рисков. Помимо этого, из всех возможных заключений и выводов они выбирали вывод о том, что такие инвестиции практически безрисковые.

Огромное количество инвесторов ошибочно считало эти заключения правильными, и мало кто из них имел план действий на случай, если что-то пойдет не так.

Тем не менее, хотя рейтинговые агентства и несут значительную ответственность за финансовый кризис, они были не единственными, кто допустил ошибки. История финансового кризиса как результата неудачного предсказания может быть рассказана в трех актах.

Акт I. Пузырь на жилищном рынке

Исторически так сложилось, что жилье в Америке никогда не считалось привлекательной инвестицией. В сущности, если верить индексу, разработанному Робертом Шиллером и его коллегой Карлом Кейсом, рыночная цена американского дома в долгосрочной перспективе практически не росла. После корректировок на уровень инфляции инвестиция в размере 10 тыс. долл., сделанная в жилье в 1896 г., могла стоить в 1996 г. около 10,6 тыс. долл. Возврат на инвестиции составил за столетие меньше, чем обычно приносит фондовый рынок за один год{92}.

Однако если инвестиции в жилье и не были прибыльными, то они, по крайней мере, оставались безопасными. До начала 2000‑х гг. самое значительное изменение в ценах на дома в Америке произошло в годы, последовавшие сразу после Второй мировой войны, когда цены выросли примерно на 60 % от уровня 1942 г. (прежнего исторического максимума).

Отметим, что жилищный бум 1950‑х гг. не имел почти ничего общего с пузырем на жилищном рынке 2000‑х. Понять, почему в 2000‑х гг. возникла столь масштабная проблема, помогает довольно простое сравнение.

Для послевоенных лет было характерно значительное изменение стандартов жизни. Американцы вышли из военных времен, имея свободные средства{93}, и внезапно оказались в эпохе процветания. Возник огромный спрос на большие дома. За период с 1940 по 1960 г. доля домовладельцев подскочила с 44 до 62 %{94}, при этом основной рост происходил в пригородах{95}. Кроме того, жилищный бум сопровождался беби-бумом: население США увеличивалось примерно на 20 % за каждое десятилетие после войны, что почти в два раза больше показателя роста 2000‑х. То есть количество домовладельцев возрастало в каждое десятилетие примерно на 80 % – что даже превышало рост цен на жилье.

Рис. 1.2. Индекс Кейса – Шиллера, цены на жилье в США; 1890–006 гг.

Напротив, в 2000‑х гг. доля домовладений выросла совсем ненамного – пик находился примерно на уровне 69 % в 2005 г., а десятью годами ранее рост составлял 65 %{96}. Те немногие американцы, которые к тому времени не приобрели дома, уже не могли позволить себе это сделать. Процентиля[14] доходов домохозяйств, равного 40, увеличенного на величину 15 % инфляции в период между 2000 и 2006 гг.{97}, оказалось недостаточно для покрытия инфляции, не говоря уже о новых домах.

Вместо этого жилищный бум был раздут искусственным образом как за счет спекулянтов, желавших активизировать рынок, так и за счет все более сомнительных займов, выдававшихся все менее платежеспособным потребителям. Для 2000‑х гг. характерны рекордно низкие уровни темпов роста сбережений; в некоторые годы этот показатель составлял чуть более 1 %. При этом получить ипотеку было проще, чем когда-либо ранее{98}. Цены практически утратили связь с реальными показателями спроса и предложения, а кредиторы, брокеры и рейтинговые агентства – получавшие от продажи каждого дома прибыль в том или ином виде – стремились сохранить сложившийся порядок вещей.

Хотя в Соединенных Штатах никогда ранее не возникали подобные пузыри на жилищном рынке, их наблюдали в других странах. И результаты во всех случаях оказались разрушительными. Шиллер, изучавший данные за несколько столетий по многим странам от Нидерландов до Норвегии, обнаружил, что вслед за ростом цен на недвижимость до недопустимых высот неминуемо следовал крах{99}. Печально известный пузырь на рынке недвижимости Японии в начале 1990‑х гг. особенно похож на недавний пузырь на жилищном рынке США. Цена коммерческой недвижимости в Японии выросла за десятилетний период между 1981 и 1991 гг. примерно на 76 %, а затем снизилась на 31 % в течение следующих пяти лет, что очень напоминает траекторию изменения цен на дома в США во время и после пузыря{100} (рис. 1.3).


Нейт Сильвер читать все книги автора по порядку

Нейт Сильвер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет отзывы

Отзывы читателей о книге Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет, автор: Нейт Сильвер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.