MyBooks.club
Все категории

Александр Марков - Рождение сложности: Эволюционная биология сегодня

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Марков - Рождение сложности: Эволюционная биология сегодня. Жанр: Прочая документальная литература издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Рождение сложности: Эволюционная биология сегодня
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
14 декабрь 2018
Количество просмотров:
221
Читать онлайн
Александр Марков - Рождение сложности: Эволюционная биология сегодня

Александр Марков - Рождение сложности: Эволюционная биология сегодня краткое содержание

Александр Марков - Рождение сложности: Эволюционная биология сегодня - описание и краткое содержание, автор Александр Марков, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга известного биолога и популяризатора науки Александра Маркова — захватывающий рассказ о самых последних и сенсационных исследованиях в области эволюционной биологии. Зарождение и развитие жизни, возникновение многоклеточных организмов, причудливые мутации — в изложении Александра Маркова современная наука предстает в виде манящей карты, одни участки которой уже хорошо изучены, а другие еще только предстоит описать и освоить.Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. "Рождение сложности" — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Рождение сложности: Эволюционная биология сегодня читать онлайн бесплатно

Рождение сложности: Эволюционная биология сегодня - читать книгу онлайн бесплатно, автор Александр Марков

 У микроба ферроплазмы почти все белки содержат железо.

 О важной и еще не до конца понятой роли металлов в жизни примитивных клеток свидетельствуют результаты изучения необычного микроба, обнаруженного в 2000 году в биореакторе металлургического завода в Туле.

 Этот микроб, относящийся к надцарству архей (Archaea), получил название Ferroplasma acidiphilum. В отличие от большинства других архей и бактерий ферроплазма лишена жесткой клеточной стенки и размножается почкованием.

 Ферроплазма живет в очень кислых водах, насыщенных растворенным железом и другими металлами. В природе такие условия встречаются в окрестностях месторождений сульфидных руд (например пирита). Ферроплазма сама производит органику из углекислого газа (подобно растениям), а питаться готовыми органическими веществами не может. В отличие от растений источником энергии для синтеза органики из СO2 ферроплазме служит не солнечный свет, а химическая реакция окисления двухвалентного железа (Fe2+=>Fe3+).


Ферроплазма в процессе почкования (почки показаны стрелками). По фотографии из статьи с первоописанием микроба (О. V. Golyshina  et.al., 2000).


 В ходе дальнейших исследований у ферроплазмы обнаружилось еще несколько необычных особенностей. В частности, оказалось, что один из ее ферментов (альфа-глюкозидаза) является железосодержащим металлопротеином, в то время как у всех остальных организмов ферменты этого класса никакого железа не содержат. Это побудило команду микробиологов — первооткрывателей ферроплазмы проверить и остальные белки странного микроорганизма на предмет содержания в них железа и других металлов.

 Результат оказался более чем удивительным. Из 189 белков, которые ученым удалось выделить из ферроплазмы, лишь 26 не содержали железа. Остальные 163 (86%) оказались железосодержащими металлопротеинами. Самое удивительное, что аналоги большинства из этих белков, встречающиеся у других организмов, не содержат железа.

 Железо в белках ферроплазмы не является какой-то необязательной или второстепенной примесью. Исследователи показали, что аккуратное удаление железа из этих белков приводит к сильному изменению их структуры (денатурации) и потере функциональной активности. Похоже на то, что почти все белки ферроплазмы, по образному выражению авторов статьи, держатся на "железных заклепках".

 Естественно, сразу возник вопрос о причинах такого обилия железосодержащих металлопротеинов у ферроплазмы. Возможно, это общее свойство всей группы микроорганизмов, к которой относится ферроплазма? Или, может быть, оно характерно именно для микробов, обитающих в кислых, насыщенных растворенным железом водах? Для ответа на этот вопрос исследователи выделили теми же методами металлосодержащие белки из ближайшего родственника ферроплазмы — архей Picrophilus torridus, а также из неродственного, но обитающего в таких же условиях микроорганизма — бактерии Acidithiobacillus ferrooxidans. Из этих микробов удалось выделить лишь 29 и 28 металлопротеинов соответственно, из которых только половина содержала железо. Самое главное, что все железосодержащие металлопротеины этих двух микробов оказались обычными, широко распространенными металлопротеинами, которые и у многих других организмов тоже содержат железо.

 Тогда исследователи высказали дерзкую гипотезу. Они предположили, что ситуация, наблюдаемая у ферроплазмы, является случайно сохранившимся отголоском древнейших этапов развития жизни. Жизнь могла зародиться в микрополостях кристаллов пирита, в условиях, очень близких к тем, в которых ныне обитает ферроплазма. Главными отличиями этих микрополостей являются кислая среда и изобилие растворенного железа, которое в других, менее экзотических местообитаниях обычно в большом дефиците.

 Древнейшие формы жизни поначалу активно использовали для осуществления необходимых химических реакций простые неорганические катализаторы, в первую очередь соединения железа и серы. Постепенно эти катализаторы замещались более эффективными органическими — то есть белками, и вполне естественно предположить, что первые белки включали в себя атомы железа как неотъемлемые структурные и функциональные компоненты. В дальнейшем, когда живые организмы стали осваивать другие местообитания, они сразу же столкнулись с резким дефицитом доступного железа, и отбор стал способствовать замене старых железосодержащих белков другими, не нуждающимися в железе для выполнения своих функций. В конце концов железо сохранилось только в тех белках, которые без него совсем уж никак обойтись не могут.

 По мнению исследователей, обилие железосодержащих металлопротеинов у ферроплазмы объясняется тем, что предки этого микроба никогда не покидали кислых, богатых железом вод, и вся их эволюция протекала в условиях железного изобилия. Другие микроорганизмы, обитающие сегодня в похожих условиях, вероятно, попали туда вторично и на каких-то этапах своей эволюции сталкивались с дефицитом железа. Те немногочисленные белки ферроплазмы, в которых железа все-таки нет, возможно, достались ей от этих новых соседей в результате горизонтального (межвидового) обмена генами, что у микробов — обычное дело (см. главу "Наследуются ли приобретенные признаки").

 Впрочем, есть одно обстоятельство, заставляющее усомниться в столь глубокой древности ферроплазмы и ее металлопротеинов. Дело в том, что этот микроорганизм является аэробным, для окисления железа ему необходим кислород, тогда как древнейшие этапы эволюции жизни протекали в бескислородных условиях (см. главу "Планета микробов").

(Источник: Manuel Ferrer, Olga V. Golyshina, Ana Beloqui, Peter N. Golyshin, Kenneth N.Timmis. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated // Nature. 2007. V. 445. P. 91-94.)


 Как РНК решала энергетический вопрос. Чтобы два рибонуклеотида соединились вместе, образовав маленькую молекулу РНК, к одному из них должен быть присоединен дополнительный фосфат (или сразу два). Получившаяся молекула — рибонуклеотид с лишним фосфатом — обладает большим количеством энергии, которая при наличии подходящих катализаторов может быть использована для выполнения разных полезных "работ". В том числе для соединения двух рибонуклеотидов в одну молекулу — маленькую РНК. Рибонуклеотиды с дополнительными фосфатами первоначально использовались, скорее всего, только как "строительные кирпичики" при синтезе РНК. Кирпичики, надо сказать, очень удобные — ведь они включают в себя не только строительный материал, но еще и энергию, необходимую для выполнения строительных работ! Впоследствии они стали использоваться для тысяч других важных дел — везде, где для выполнения какой-то работы требуется энергия. Все живое и по сей день пользуется фосфорилированными рибонуклеотидами как универсальными поставщиками энергии при выполнении энергоемких задач. Самая известная из этих "энергетических" молекул — АТФ (аденозинтрифосфат). Это обычный рибонуклеотид, к которому присоединены два дополнительных фосфата. АТФ одновременно и источник энергии для множества энергоемких реакций, и один из кирпичиков для синтеза РНК. Так земная жизнь нашла универсальное решение сразу двух задач: запасания энергии в удобной форме и синтеза РНК — главных молекул жизни.


НАД (никотинамид-аденин-динуклеотид) — важнейший участник энергетического метаболизма клетки, используемый как универсальный переносчик протонов и электронов. Представляет собой два соединенных рибонуклеотида: обычный (аденозин) и "нестандартный" (никотинамид). Структура этого вещества — еще одно "напоминание* об эпохе РНК-мира.

Оболочка

 Все организмы дискретны в пространстве и имеют наружную оболочку. Трудно представить себе живое существо в виде туманного облачка или раствора (разве что в фантастическом романе). Однако поначалу преджизнь существовала именно в виде растворов. Чтобы не раствориться окончательно, не рассеяться в водах древних водоемов, "живые растворы" должны были ютиться в крошечных полостях, которые часто встречаются в минералах. Это тем более удобно, что некоторые минералы (например, пирит) являются неплохими катализаторами для многих биохимических реакций. Кроме того, поверхность минералов могла служить своеобразной матрицей, основой, к которой прикреплялись молекулы РНК. Упорядоченная структура кристаллов помогала упорядочить и структуру этих молекул, придать им нужную пространственную конфигурацию.

 Но рано или поздно преджизнь должна была обзавестись собственными оболочками — перейти от доорганизменного уровня к организменному. Идеальным материалом для таких оболочек являются липиды (жиры), молекулы которых способны образовывать на поверхности воды тончайшие пленки. Если взболтать такую воду, в ее толще образуется множество мелких пузырьков — водяных капелек, покрытых двухслойной липидной оболочкой (мембраной). Эти капельки проявляют интересные свойства, которые делают их похожими на живые клетки. Например, они способны осуществлять обмен веществ. Липидные мембраны обладают избирательной проницаемостью: одни молекулы сквозь них проходят, другие — нет. Благодаря этому одни вещества втягиваются в каплю, другие выводятся, третьи — накапливаются внутри. Правда, для того, чтобы это происходило постоянно, одних мембран недостаточно. Нужно еще, чтобы внутри капли одни вещества превращались в другие, а для этого там должны находиться катализаторы — белки или РНК.


Александр Марков читать все книги автора по порядку

Александр Марков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Рождение сложности: Эволюционная биология сегодня отзывы

Отзывы читателей о книге Рождение сложности: Эволюционная биология сегодня, автор: Александр Марков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.