Органы управления
Для управления аэропланом служат следующие его части:
Вертикальный руль или руль направления служит для поворачивания аппарата вправо и влево; действует совершенно так же, как руль лодки. Он соединен тросами с особыми педалями; летчик поворачивает его, а следовательно, и весь аппарат, нажимая сильнее одной или другой ногой.
Горизонтальный руль или руль высоты служит для того, чтобы наклонить аэроплан передней частью книзу или наоборот, т. е. заставить весь аэроплан идти книзу или же заставить его подниматься кверху. В руках летчика имеется обычно колесо на подвижной раме. Толкая это колесо от себя, он заставляет машину снижаться. Притягивая его к себе, он достигает обратного, т. е. аппарат начинает забирать высоту. Руль направления и руль высоты расположены на конце фюзеляжа. Кроме них, на концах крыльев делаются так называемые крылышки боковой устойчивости или элероны. Они служат для того, чтобы наклонять на правую или на левую сторону весь аэроплан, а еще чаще для того, чтобы выровнять его, если он сам почему-либо наклонится. Действуют они таким образом, что, когда правое крыло идет вниз, левое идет вверх, и наоборот. Приводятся в движение летчиком путем поворачивания колеса, о котором упоминалось выше.
Шасси или тележка аэроплана
Как известно, аэропланные крылья не могут поднять на воздух машину иначе, как если она движется относительно воздуха с большой скоростью. Поэтому каждый аэроплан должен двигаться с большой скоростью уже до того, как он отделится от земли. То же самое и при возвращении на землю. В самую последнюю секунду полета аппарат будет иметь еще довольно большую скорость, иначе крылья не могли бы держать его, и следовательно, он коснется земли, двигаясь вперед еще довольно быстро. Поэтому аэроплан должен иметь приспособление, позволяющее ему свободно катиться, до начала полета и после окончания его, по той поверхности, для которой приспособлена его тележка.
В настоящее время пользуются тремя типами тележки: для взлета с земли, со снега и с воды. Наиболее распространенной является земная. Она состоит, главным образом, из двух, четырех, а иногда и более колес на стальных спицах с довольно толстыми шинами, надуваемыми воздухом наподобие автомобильных. Ось колес прикрепляется к нижней раме аппарата, по большей части с помощью особых резиновых жгутов. Делается это, чтобы более смягчить толчки, возникающие при разбеге по неровной почве или, особенно, при грубом спуске на землю.
Рама, к которой крепятся эти резины, состоит обычно из прочных деревянных брусков или из стальных труб, подпирающих аэроплан, по большей части под места, где расположены мотор, бензиновый бак и сидение для летчика. Для взлета со снега обыкновенно колеса снимаются с своих осей, а на их место надеваются лыжи, более или менее широкие, в зависимости от того, придется ли взлетать с твердого или рыхлого снега. Приспособление для взлета с воды состоит из поплавков, т. е. пустотелых, по большей части деревянных ящиков такого размера, чтобы они могли легко поддержать на воде весь аэроплан. Обыкновенно делается два главных поплавка под крыльями и третий маленький сзади под концом хвоста. Аппараты, взлетающие с воды, называются гидроаэропланами. Кроме описанных выше поплавковых, существует еще один тип гидроаэропланов, называемый летающей лодкой. В последней корпус делается значительно ниже крыльев и по форме своей несколько напоминает плоскодонную лодку. Он делается непроницаемым для воды и поддерживает на воде весь аппарат. В этой лодке обычно помещается летчик и пассажиры. Мотор приходится помещать значительно выше, чтобы несколько отдалить от воды винт, т. к. он легко ломается, если зацепит за гребень волны. Все гидроаэропланы не особенно хорошо выдерживают волны, и в открытом море взлет и спуск в неспокойную погоду бывает труден и опасен. Приспособление для взлета с воды, т. е. поплавки или лодка, всегда тяжелее, чем колеса или лыжи, и дают большее вредное сопротивление, чем эти последние. Поэтому при одинаковом двигателе и нагрузке воздушные качества гидроаэроплана обычно несколько хуже, чем аэроплана на колесах или лыжах.
Наиболее характерной особенностью аэроплана, сравнительно с другими машинами, как например — паровозом, является его легкость. Называя легкими эти аппараты, весящие иногда по несколько сотен пудов, приходится учитывать их сравнительный вес. Аэроплан с двигателем в 300 лош. сил весит примерно столько, как автомобиль в 20-30 лош. сил. Сравнивая небольшой вес аппарата с громадной силой двигателя, легко понять, что для тех усилий, которые несут части аэроплана, они должны весить исключительно мало. Чтобы выработать способы, давшие возможность делать их такими легкими, потребовалось немало труда и усилий. В общем, легкость эта достигается тем, что каждую часть аппарата стараются делать точно такой прочности, какая необходима, без всякого излишка. Но чтобы это было возможным, необходимо сперва точно определить, с какой силой натягивается в полете каждая проволочка, какое усилие испытывает каждый брус, стойка и т. д. Все это достигается серьезным математическим расчетом. А затем, путем подсчетов и опытов определяют, какую толщину должна иметь каждая отдельная проволока, болт, брусок и т. д., чтобы все они имели необходимый запас прочности. Выражение это означает следующее. Допустим, что некоторая проволока натянута в полете так, как если бы к ней привесили груз в 5 пудов. Чтобы эта проволока не порвалась от случайно увеличившейся нагрузки, от какого-нибудь мелкого изъяна ржавчины и т. д., чтобы она вообще была надежна, надо ставить ее такой толщины, чтобы разрыв ее мог получиться лишь при нагрузке не в 5, а в 25 пудов. Таким образом, всякую проволоку, брусок, болт необходимо подобрать так, чтобы они могли разорваться или сломаться лишь при усилии в 5 раз большем, чем то, которое ими испытывается в полете. При таких условиях говорят, что аэроплан имеет запас прочности 5[ 47 ]. Казалось бы на первый взгляд, что в отношении прочности расчет аэроплана должен выполняться так же, как и расчет всякой другой машины или постройки, т. к. все они должны иметь определенный запас прочности. В действительности это не совсем так. Если при расчете какой-нибудь машины или постройки инженер не уверен в том, что он задал правильную толщину какой-нибудь балки, железной полосы и т. д., особенно во второстепенных частях, он просто берет эту часть в полтора-два раза толще, лишь бы она не была слабее, чем надо. А если эта часть окажется крепче, чем необходимо, — не беда. Иное дело в аэроплане. Каждая его часть, до самых небольших включительно, не должна быть ни слабее, ни прочнее, чем необходимо, т. к., если ее сделать прочнее, она окажется тяжелее, а лишний вес аэроплана ухудшает его качества. Поэтому расчет и выяснение необходимой толщины всякой части должны быть выполнены с исключительной точностью. Мне пришлось однажды соорудить специальную машину и произвести на ней множество опытов, чтобы выяснить, можно ли деревянные ребрышки на строящемся аэроплане сделать на 1/32 дюйма[ 48 ] тоньше, чем было вначале предположено. Проф. Г. А. Ботезат очень хорошо определяет эти особенности дела постройки аэропланов, указывая, что в этом деле, в отличие от многих других, инженер не может взять поправку на свое незнание и что аэроплан, по требуемой им точности расчета и выполнения, является самой сложной, но и самой красивой из современных машин.
Из того, что было сказано о постройке аэропланов, должно быть понятным, что для их изготовления ипользуются, по большей части, самыми лучшими и дорогими материалами. Железный прут и вдвое более тонкая проволока из хорошей прочной стали могут выдержать одинаковый груз. В большинстве земных построек проще взять дешевый железный прут, т. к. его толщина и вес ничему не помешают. В аэроплане надо поставить проволоку из самой лучшей стали, чтобы при той же прочности она была как можно тоньше. При этом она будет легче и кроме того, дает меньше вредного сопротивления. В таком же роде дело обстоит и с другими материалами. Как же получается то, что большая часть аэропланов до сих пор строится почти целиком из дерева? Казалось бы, что железо, а тем более сталь, гораздо прочнее всякого дерева? Однако это не совсем так. Чтобы судить о пригодности для постройки аэроплана и сравнивать между собою разные материалы, надо было поступать примерно таким образом. Брались бруски или трубки из различных материалов и подгонялись так, чтобы все они имели одинаковую длину и вес. Например, каждая стальная трубка и каждый деревянный брусок должны были иметь 1 аршин в длину и должны были весить один фунт. Понятно, что при таких условиях приходилось брать трубку с довольно тонкими стенками, а деревянные бруски выходили в виде более толстых сплошных палочек, причем дубовая и ясеневая получались тоньше, чем еловая[ 49 ]. Затем каждую такую палочку и трубку подпирали на концах, к середине привязывали небольшой ящик и начинали накладывать в него гири до тех пор, пока брусок не сломается. При этом точно замечали, какой наибольший вес он выдерживал до того, как сломался. Понятно, что если один брусок выдержал 200 фунтов, а другой — 300 фунтов, то можно определенно сказать, что второй брусок в таких условиях в полтора раза крепче первого. Много интересных опытов такого рода было произведено в Петроградском политехническом институте инженером В. А. Слесаревым. При этом оказалось, например, что брусок из русской ели был прочнее, чем почти все, что испытывалось, в том числе железные трубки. Подобными опытами и руководствуются строители, подбирая толщину, форму и качество материала для своих машин.