MyBooks.club
Все категории

Александр Марков - Рождение сложности: Эволюционная биология сегодня

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Марков - Рождение сложности: Эволюционная биология сегодня. Жанр: Прочая документальная литература издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Рождение сложности: Эволюционная биология сегодня
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
14 декабрь 2018
Количество просмотров:
221
Читать онлайн
Александр Марков - Рождение сложности: Эволюционная биология сегодня

Александр Марков - Рождение сложности: Эволюционная биология сегодня краткое содержание

Александр Марков - Рождение сложности: Эволюционная биология сегодня - описание и краткое содержание, автор Александр Марков, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга известного биолога и популяризатора науки Александра Маркова — захватывающий рассказ о самых последних и сенсационных исследованиях в области эволюционной биологии. Зарождение и развитие жизни, возникновение многоклеточных организмов, причудливые мутации — в изложении Александра Маркова современная наука предстает в виде манящей карты, одни участки которой уже хорошо изучены, а другие еще только предстоит описать и освоить.Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. "Рождение сложности" — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Рождение сложности: Эволюционная биология сегодня читать онлайн бесплатно

Рождение сложности: Эволюционная биология сегодня - читать книгу онлайн бесплатно, автор Александр Марков

 Основные различия между имеющимися гипотезами происхождения эукариот касаются происхождения "ядерно-цитоплазматического компонента" эукариотической клетки. Ясно, что его предком был какой-то крупный одноклеточный организм, который "проглотил" сначала будущих митохондрий, а потом будущих пластид, и превратил их в своих внутренних "сожителей"-симбионтов. Или, может быть, они не были проглочены, а проникли в него по собственной инициативе (подобно тому, как сейчас это делают внутриклеточные паразитические бактерии). Проблема в том, что этот организм-хозяин, насколько мы можем судить, был не очень похож на современных, доживших до наших дней прокариот. Он обладал рядом уникальных свойств.

 Существует несколько версий его происхождения. Одни эксперты считают, что это была архея, возможно, близкая к современным термоплазмам или ферроплазмам, о которых мы немного рассказали в главе "Происхождение жизни". Все уникальные свойства развились уже после приобретения внутренних симбионтов (митохондрий) и объединения разнородных геномов в единый ядерный геном. Согласно другой гипотезе, предком цитоплазмы и ядра эукариот был представитель не архей и не бактерий, а некоей особой вымершей группы прокариот. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий. Впрочем, дело могло обойтись и без слияния — оказалось достаточно очень интенсивного обмена генами между разными микробами, чтобы их свойства перемешались в одной клетке (о горизонтальном генетическом обмене подробно рассказано в главе "Наследуются ли приобретенные признаки?").


Распределение белковых семейств в трех надцарствах живой природы. Площади кругов соответствуют количеству семейств белков, встреченных у представителей данного надцарства. Как видно из рисунка, 1157 белковых семейств являются общими для всех трех надцарств, 2372 встречены только у эукариот, 831 есть у эукариот и бактерий, но не у архей, и т. д. (из статьи: Марков А. В., Куликов А. М. Происхождение эвкариот: выводы из анализа белковых гомологий в трех надцарствах живой природы // Палеонтол. журн. 2005. № 4. С. 3-18. http://evolbiol.ru/markov_kulikov.htm).


 У каждой из версий, понятное дело, есть свои аргументы и свои сторонники. Лично мне больше всего нравится "химерная" теория. По крайней мере, именно к ней склонил нас с А. М. Куликовым (Институт биологии развития РАН) сравнительный анализ семейств белков, имеющихся у представителей трех надцарств живой природы — архей, бактерий и эукариот. Белки архейного происхождения, хотя их не очень много (114 семейств, см. рисунок), играют в эукариотической клетке ключевую роль. Именно они отвечают за работу с генетической информацией — транскрипцию, трансляцию, репликацию. Сюда относятся и НК-полимеразы, о которых шла речь выше, а также большинство белков, входящих в состав рибосом. Это позволяет предполагать, что в основе ядерно-цитоплазматического компонента эукариот лежала именно архея, а не бактерия и не какая-то особая "третья" группа прокариот, не дожившая до наших дней.

 Многие белки бактериального происхождения попали в эукариотическую клетку вместе с "проглоченными" симбионтами — предками митохондрий и пластид. Однако среди "бактериальных" белков цитоплазмы и ядра есть и много таких, которые, скорее всего, не могли быть получены таким способом. Речь идет о тех семействах белков, которые есть у эукариот и есть также у бактерий, но не у тех, от которых произошли органеллы, а у каких-нибудь других. Иными словами, в эукариотической клетке существуют "бактериальные" семейства белков, которые не могли быть получены первыми эукариотами ни от "проглоченных" альфапротеобактерий, ни от цианобактерий — предков пластид. Но они, однако, могли быть получены от других бактерий — в особенности от различных бродильщиков (гетеротрофных бактерий, сбраживающих углеводы в бескислородных условиях). Похоже, именно от бродилыциков эукариоты получили, в частности, ферменты гликолиза — так называется важнейший энергетический процесс, происходящий в цитоплазме эукариотической клетки. Суть его в том, что молекула глюкозы расщепляется ("сбраживается") без использования кислорода до пировиноградной кислоты (пирувата), и при этом происходит синтез АТФ. Пируват является для цитоплазмы конечным продуктом обмена, "отходом жизнедеятельности". Но пируват затем попадает в митохондрии, которые "сжигают" его в своей кислородной печке с огромным выходом энергии (которая тоже используется для синтеза АТФ). В совокупности бескислородный гликолиз, происходящий в цитоплазме, и кислородное дыхание, происходящее в митохондриях, являются главными источниками АТФ для эукариотической клетки.


Распределение эукариотических белков архейного и бактериального происхождения по шести функциональным группам: 1 — синтез белка, 2 — репликация, транскрипция, модификация ДНК и РНК, 3 — сигнальные и регуляторные белки, 4 — образование мембранных пузырьков, 5 — транспортные и сортировочные белки, 6 — обмен веществ.


 И вот на основе всех этих данных, а также с учетом того, что известно о строении и функционировании микробных сообществ, вырисовывается следующий возможный сценарий превращения сообщества прокариот в эукариотическую клетку (конечно, надо помнить, что это только один из возможных сценариев).


Этапы великой драмы

В начале, как мы уже знаем, было сообщество. Это был трехслойный бактериальный мат, почти такой же, как современные бактериальные маты, с той разницей, что верхний его слой образовывали не кислородные (оксигенные), а бескислородные фотосинтетики. Это были предки цианобактерий, еще не научившиеся использовать в качестве донора электрона воду. Они по старинке потребляли сероводород и выделяли серу или сульфаты.

 Второй слой составляли другие аноксигенные фотосинтетики, в том числе альфапротеобактерии — предки нынешних пурпурных бактерий (а заодно и митохондрий, но об этом чуть позже). Эти розовые создания и сегодня живут в бактериальных матах под слоем цианобактерий, потому что питаются более длинноволновым светом, который легко проходит сквозь верхний зеленый слой сообщества.

 В третьем слое жило много всякой мелочи. Здесь были бактерии-бродильщики, которые сбраживали избыточную органику, производимую верхними фотосинтезирующими слоями. Они выделяли молекулярный водород, который использовался для восстановления сульфатов бактериями-сульфатредукторами. В результате их деятельности в сообществе пополнялись запасы сероводорода, необходимого двум верхним слоям. Здесь же подвизались и археи-метаногены, которые с удовольствием использовали производимый бродильщиками водород для восстановления углекислого газа и синтеза метана. Метаногены и сегодня живут практически везде, где нет кислорода и есть бродильщики, — например, у нас в кишечнике.

 Сообщество было вполне устойчивым и могло спокойно существовать в таком виде сотни миллионов лет (что оно, по всей видимости, и делало). Но потом цианобактерии "изобрели" кислородный фотосинтез (см. предыдущую главу), начали выделять кислород, и спокойному существованию пришел конец. Для всех древних форм земной жизни — и для всех без исключения членов нашего древнего сообщества — кислород был опаснейшим ядом. Даже самим цианобактериям было не очень приятно жить в отравленной — с их точки зрения — среде. Но возможность наконец-то избавиться от "сероводородной зависимости" перевешивала все прочие соображения. Конечно, цианобактерии поступили крайне эгоистично — ради собственной независимости они чуть не отравили все живое на планете, но в конечном счете их эгоизм оказался полезен для биосферы. Ведь без него наша Земля и по сей день оставалась бы "планетой микробов".

 К счастью для цианобактерий, они очень быстро нашли способ обезвреживать ядовитые продукты собственной жизнедеятельности. И тот же самый способ — причем даже с большей эффективностью — применили для защиты от яда обитатели второго слоя, пурпурные бактерии. Скорее всего, тут не обошлось без горизонтального обмена генами. В чем же состоял этот способ? Как обычно, эволюция слепила новую молекулярную "машинку" из того, что первым подвернулось. Для эволюции это очень характерный и легко узнаваемый стиль. Поскольку в данном случае дело касалось фотосинтезирующих микробов, в ход пошел аппарат фотосинтеза. Небольшая модификация некоторых частей этого аппарата привела к возникновению системы кислородного дыхания.


 Как клетки научились дышать. Упрощенно говоря, в процессе фотосинтеза квант света выбивает из молекулы хлорофилла электрон. Этот "возбужденный" электрон затем передается "из рук в руки" по цепочке белков, постепенно теряя свою энергию, которая идет на синтез АТФ. В конце концов электрон возвращается на место, то есть передается молекуле хлорофилла — той же самой или другой.


Александр Марков читать все книги автора по порядку

Александр Марков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Рождение сложности: Эволюционная биология сегодня отзывы

Отзывы читателей о книге Рождение сложности: Эволюционная биология сегодня, автор: Александр Марков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.