На штурм загадки белковой структуры Полинг пошел в начале лета 1937 года, сбросив бремя преподавательских обязанностей[179]. На илл. 11 представлена схема общей структуры[180], над которой он работал. Тщательно изучив химическую связь между атомом углерода (на рисунке он обозначен буквой С) и соседним атомом азота (обозначен буквой N), Полинг пришел к выводу, что так называемые пептидные группы – углерод, кислород, азот и водород – должны лежать в одной плоскости. Эта черта и оказалась самой важной, поскольку сильно ограничивала количество возможных вариантов структуры, поэтому Полинг надеялся, что сумеет в конце концов выявить правильную конфигурацию. Однако в науке обычно ждешь одного, а получается совсем другое. Полинг несколько недель работал день и ночь – и все же не сумел разобраться, какой способ сложения пептидных цепочек приводил бы к повторению каждые 5,1 ангстрем вдоль оси волокна, на что указывали данные рентгеновских снимков. У него опустились руки, и он бросил работу над этой задачей.
Когда какая-нибудь многообещающая гипотеза себя не оправдывает, ученые частенько пытаются улучшить качество доступных экспериментальных данных, поскольку более точные сведения иногда позволяют выявить доселе скрытые подсказки. Именно поэтому Полинг уговорил химика Роберта Кори[181] принять участие в долгосрочном проекте, целью которого было определить структуру некоторых простых пептидов и аминокислот – кирпичиков, из которых сложены белки – при помощи рентгеновской кристаллографии. Кори предался этим исследованиям с большим энтузиазмом, и к 1948 году его группа в Калифорнийском технологическом институте смогла разобраться в точной архитектуре примерно дюжины подобных компонентов. Полинг увидел, что все данные о длине химических связей и об углах между разными частями молекул, а также о плоскостной конфигурации пептидной группы, которые получал Кори, в точности согласуются с его изысканиями в прошлом, и решил вернуться к задаче о структуре белка альфа-кератина. Свои воспоминания о тех временах Полинг в 1982 году записал на диктофон (это был диктофон сильно устаревшей к тому времени модели):
«Весной 1948 года я был в Англии, в Оксфорде; в тот год я занимал должность Истмановского профессора и работал в Бейлиол-колледже. Я простудился, захворал, и мне пришлось дня три пролежать в постели. Через два дня мне надоело читать детективы и фантастику, и я задумался над структурой белков[182].»
Очередную атаку на эту загадку Полинг начал с предположения, что все аминокислоты в альфа-кератине с точки зрения структуры должны находиться в одинаковом положении относительно полипептидной цепи. Еще лежа в постели, Полинг попросил свою жену Аву-Хелен принести карандаш, линейку и лист бумаги. Полинг следил, чтобы каждая пептидная группа не вылезала за пределы плоскости листа, при помощи жирных и тонких линий отмечал трехмерные связи и поворачивал пептидные группы вокруг двух одинарных связей между атомами углерода – и у него получилась спиральная модель[183] наподобие винтовой лестницы, где полипептидный хребет составлял центр спирали, а аминокислоты торчали наружу (илл. 12). Чтобы придать конструкции стабильность, Полинг добавил водородные связи между соседними витками спирали, параллельно ее оси (илл. 12; водородная связь – это химическая связь, при которой атом водорода из одной молекулы притягивается к атому другой молекулы). Полинг нашел даже два подходящих варианта структуры – один он назвал альфа-спиралью, а другой гамма-спиралью.
То, что Полинг при помощи столь простых и относительно примитивных инструментов сумел найти решение этой задачи (на илл. 11 показана его попытка реконструировать тот самый чертеж 1948 года), лишь доказывает важность его более раннего открытия – когда он понял, что пептидная группа должна быть плоской. Без этого вариантов комбинаций было бы гораздо больше. Полинг разволновался и потребовал у жены логарифмическую линейку (сейчас уже мало кто помнит, что это такое, а в те времена это был очень распространенный инструмент для вычислений), чтобы рассчитать расстояние между витками вокруг оси волокна. Он обнаружил, что структура альфа-спирали повторяется через каждые 18 аминокислот на пять витков. То есть у альфа-спирали было 3,6 аминокислот на виток. Увы, к вящему огорчению Полинга, подсчет дал расстояние между витками в 5,4 ангстрем, а не в 5,1 ангстрем, на которые указывали данные дифракции рентгеновских лучей. У гамма-спирали вдоль оси шел туннель, такой тесный, что там не помещались другие молекулы, поэтому Полинг сосредоточился на альфа-спирали. Он ни на йоту не сомневался, что нашел верное решение, поэтому приложил все усилия, чтобы найти способ скорректировать углы или длины связей и добиться уменьшения расчетного расстояния с 5,4 до 5,1 ангстрем, однако ничего у него не получилось. Поэтому, хотя модель альфа-спирали очень ему нравилась, он решил воздержаться от ее обнародования, пока не разберется, в чем причина подобных расхождений.
Месяца через полтора Полинг посетил лабораторию Кавендиша в Кембридже и был глубоко потрясен увиденным: «Оборудование у них раз в пять лучше нашего, – писал он своему ассистенту Эдварду Хьюзу в Калифорнийском технологическом институте, – и есть установки, которые могут делать около 30 рентгеновских снимков одновременно»[184]. Полинг был очень обеспокоен тем, что в его модель вкралась ошибка, и при этом боялся, что ученые из лаборатории Кавендиша опередят его и первыми ее проанализируют, поэтому об альфа-спирали никому не рассказывал. Даже во время дискуссии со знаменитым химиком Максом Перуцем[185], когда тот показал Полингу потрясающие результаты своих исследований – он занимался структурой кристалла гемоглобина – Полинг предпочел держать свои соображения при себе.
Однако задача не давала ему покоя. Вернувшись в Пасадену, Полинг тут же попросил приглашенного профессора физики Германа Брэнсона тщательно проверить все эти вычисления. Особенно Полинга интересовало, не сможет ли Брэнсон[186] найти третью спиральную структуру, которая соответствовала бы условиям плоскостной структуры пептидной связи и имела бы максимально сильные водородные связи для устойчивости. Брэнсон и один из помощников Полинга Сидни Вейнбаум целый год просеивали вычисления Полинга сквозь частое сито и пришли к выводу, что структур, соответствующих всем этим условиям, и в самом деле только две: альфа-спираль и гамма-спираль. Кроме того, Брэнсон и Вейнбаум подтвердили, что у более тугой альфа-спирали расстояние между витками составляет 5,4 ангстрем.
Итак, перед Полингом встала дилемма: либо просто проигнорировать несоответствие данным рентгеновских снимков и опубликовать свою модель, либо подождать с публикацией, пока головоломка не будет окончательно решена. Принять решение ему помогла статья, которая была подана в печать в Англии 31 марта 1950 года.
Надо было разозлить вас раньше
Статья называлась «Конфигурации полипептидных цепей в кристаллических белках»[187], а написали ее три светила: Лоренс Брэгг, нобелевский лауреат по физике 1915 года, и два молекулярных биолога, которым еще предстояло получить Нобелевскую премию по химии в 1962 году – Джон Кендрю и Макс Перуц, все трое – из лаборатории Кавендиша в Кембридже. В то время эта знаменитая лаборатория была всемирным центром рентгеновской кристаллографии. В целом рентгеновская кристаллография была детищем Брэггов: Лоренс Брэгг и его отец сэр Генри Брэгг вместе трудились над математической моделью этого физического феномена и разработали экспериментальную методику.
Идея рентгеновской кристаллографии проста до гениальности[188]. Еще с начала XIX века физики понимали, что если направить видимый свет на решетку с равным расстоянием между прутьями, а позади решетки поставить экран, то свет, пройдя сквозь нее, формирует на экране дифракционный узор из темных и светлых пятен. Светлые пятна получались в тех местах, где световые волны из разных щелей в решетке усиливали друг друга, а темные – там, где различные волны подвергались деструктивной интерференции (там, где пик одной волны накладывался на минимум другой). Однако, кроме того, физики знали, что для формирования дифракционного узора расстояния между щелями должно быть того же порядка, что и длина волны светового излучения (расстояние между двумя соседними пиками волны). Хотя создать подобные решетки с тончайшими прорезями для видимого света было относительно легко, сделать их для рентгеновских лучей оказалось невозможно: типичная длина волны для рентгеновского излучения в тысячи раз короче длин волн видимой части спектра. Первым, кто понял, что решетками для установок, на которых проводятся эксперименты по дифракции рентгеновского излучения, могут послужить встречающиеся в природе периодические кристаллы, был немецкий физик Макс фон Лауэ. Лауэ обнаружил, что межатомные расстояния в кристаллах были в точности того же порядка, что и предполагаемые длины волн рентгеновского излучения. Лоренс Брэгг пошел по стопам Лауэ и сформулировал математический закон, который описывает дифракцию рентгеновских лучей на кристаллической структуре. Как ни поразительно, этот важнейший результат он получил еще на первом курсе магистратуры в Кембридже. Семейная команда, состоящая из Генри и Лоуренса Брэггов, построила затем рентгеновский спектрометр, который позволил им проанализировать структуру самых разных кристаллов. Кстати, Лоуренс Брэгг – самый молодой в истории нобелевский лауреат: когда он получил премию, ему было всего 25 лет!