«Мы не претендуем на исчерпывающую интерпретацию волоконного изображения структуры В, однако можем сделать следующие выводы. Вероятно, структура эта спиральна. Фосфатные группы расположены на внешней стороне структурной единицы на спирали диаметром около 20 ангстрем. Структурная единица, вероятно, состоит из двух коаксиальных молекул, которые расположены вдоль оси волокна неравномерно… Наши общие предположения не противоречат модели, предложенной Уотсоном и Криком в предшествующей заметке.»
Очевидно и бесспорно, что отличные рентгеновские снимки, которые сделала Розалинда Франклин, обеспечили важнейшую информацию о структуре ДНК в целом и о ее конкретных параметрах. К сожалению, Розалинда Франклин в 1958 году умерла от рака, ей было всего 37 лет. Весьма вероятно, болезнь была вызвана передозировкой рентгеновского излучения – того самого, которое позволило выявить структуру ДНК. Четыре года спустя Уотсон, Крик и Уилкинс получили Нобелевскую премию по физиологии и медицине за открытие молекулярной структуры ДНК и ее важности для передачи информации в живой материи. Поскольку посмертно Нобелевской премией не награждают и нельзя делить ее больше чем на трех человек (в одной категории и за один год), мы так и не узнаем, что произошло бы, если бы Франклин дожила до 1962 года.
В 2009 году знаменитый снимок № 51 дал название пьесе Анны Циглер[275]; постановка имела успех. Пьеса «Фотография 51» – беллетризованный рассказ о Розалинде Франклин и ее непростых отношениях с Морисом Уилкинсом. Когда Уотсона спросили, что он думает об этой пьесе, он ответил, что Морис Уилкинс в ней «слишком много болтает», а актер, игравший Крика, совсем не похож на настоящего Крика, поскольку по воле драматурга этот персонаж «напоминает торговца подержанными автомобилями».
Признавать поражение не любит никто, и ученые – не исключение. В письме Питеру от 27 марта 1953 года Полинг в первых же строках «между делом» отмечает:
«Было бы мило с твоей стороны, если бы ты связался с мисс Франклин, если ты считаешь, что это хороший план, и договорился о нашей встрече с ней. Если сотрудники Королевского колледжа (а мисс Франклин ушла оттуда и теперь работает у Бернала в Биркбеке) выразят заинтересованность в том, чтобы я у них побывал, может быть, удастся устроить так, чтобы это было в один день. Однако обсуждать с ними этот вопрос я не планирую[276].»
Затем следует абзац, где Полинг рассказывает, как именно собирается построить поездку, а потом он продолжает:
«Я получил письмо от Уотсона и Крика с кратким описанием их модели, с приложением копии их письма в «Nature». Мне кажется, что это очень интересная структура, у меня нет против нее серьезных возражений. Правда, не думаю, что и у них есть серьезные возражения против нашей модели.»
Далее в том же письме Полинг признал, что содержание воды в молекуле – это, вероятно, очень важное обстоятельство: «У нас есть доводы… в поддержку трех нуклеотидных остатков… однако, если образец относительно сухой нуклеиновой кислоты содержит около 30 % воды… остатков такой длины будет только два». И заключил: «Думаю, что снимки Уилкинса окончательно снимут все вопросы».
Я спросил у Алекса Рича, действительно ли Полинг считал, что сумеет отстоять свою модель тройной спирали, а у модели двойной спирали есть недостатки. Ответ Рича был совершенно недвусмыслен: «Конечно, Полинг понимал, что двойная спираль – это верная модель, – сказал он. – Все эти разговоры о недостатках – чистой воды бравада». И в самом деле, в первую неделю апреля Полинг приехал в Кембридж (на илл. 17 вы видите его фотопортрет, сделанный в 1953 году) и, увидев макет модели Уотсона и Крика и снимок Франклин и выслушав объяснения Крика, благосклонно признал, что структура, судя по всему, верна. Дня через два Полинг и Брэгг отправились на Сольвеевский конгресс в Брюссель. На этой конференции ведущих ученых планеты Брэгг представил модель двойной спирали. Во время последовавшего обсуждения Полинг с большим достоинством заметил: «Хотя мы с профессором Кори опубликовали статью о своей модели структуры нуклеиновой кислоты всего два месяца назад, пожалуй, придется признать, что она ошибочна»[277].
Кое-кто из читателей скажет, вероятно, что ляпсус Полинга не такой уж и блистательный: его модель была вывернута наизнанку, и в ней оказалась лишняя цепочка. Однако Уотсон и Крик вдохновлялись именно методом Полинга, его образом мыслей, его невероятным достижением – моделью молекулы сложного белка; они опирались на его соображения. В короткой статье, опубликованной 21 марта 1999 года, Уотсон писал о Полинге: «Неудача следует рука об руку с величием, и это очень огорчительно. Но сейчас мы принимаем во внимание исключительно достоинства Полинга, а не какие-то его недостатки, канувшие в прошлое. Я прекрасно помню, как 50 лет назад Полинг объявил, что жизнь – это процесс, обусловленный лишь химическими связями, а никакими не жизненными силами. Если бы не эта мысль, мы с Криком ничего бы не добились»[278].
Открытие структуры ДНК распахнуло двери для целой лавины исследований, кульминацией которого стало официальное завершение проекта «Геном человека», котрое состоялось в апреле 2003 года. Ученые полностью расшифровали ДНК человека (хотя в 2006 году в журнале «Nature» опубликовали очередную статью о последовательности одной хромосомы, а анализ полученных данных займет много лет). По пути ученых ждало много неожиданностей. Например, до 2000 года биологи считали, что геном человека состоит примерно из 100 000 генов, кодирующих белки. Однако результаты работы Международного Консорциума по Секвенированию Человеческого Генома, обнародованные в 2004 году, сократили это число до 25 000, а то и меньше – чуть больше, чем количество генов у незатейливой нематоды C. elegans! Технология генетического секвенирования, которая становится все дешевле и быстрее, в последнее время дала ученым возможность нарисовать новую картину происхождения человека. Это новое представление[279] основано на генетическом анализе кончика мизинца девочки, жившей 40 000 лет назад и найденной в сибирской пещере; из анализа следует, что современное человечество отнюдь не в полном составе пришло из Африки. Скорее всего, оно встретилось и смешалось еще как минимум с двумя другими группами первобытных людей.
Открытие структуры и функций ДНК пролило свет и на эволюцию – оно прояснило природу наследственных вариаций, на которых основывается естественный отбор. Полинг провозгласил, что жизненные процессы – это следствие законов химики и физики, и это подтвердилось благодаря пониманию того, какие именно силы формируют и изменяют последовательности ДНК. На илл. 18 приведена групповая фотография участников Конференции по структуре белка в Пасадене в сентябре 1953 года, на ней собраны многие ключевые фигуры, поспособствовавшие открытию альфа-спирали и двойной спирали.
Илл. 18
Невозможно даже представить себе, какие перспективы открывают перед нами в отдаленном будущем понимание структуры ДНК и способность модифицировать эту молекулу – от значительного увеличения продолжительности жизни человека до создания новых форм жизни. Расшифровка структуры ДНК уже привела к обнаружению генетических причин различных болезней – а это настоящая революция в поисках лечения. Нечего и говорить, что эра генома привела и к невообразимому до сей поры прогрессу в криминалистике. Например, после того, как в 2001 году пять человек умерли от сибирской язвы, бактерии которой распространялись посредством инфицированных писем, ФБР сумело расшифровать геном микроба и проследить, какой штамм применяли преступники (5,2 миллионов пар оснований). В итоге следователи вышли на военную лабораторию, откуда, скорее всего, и были взяты бактерии.
Благодаря изучению структуры ДНК и белков вопрос происхождения жизни заиграл новыми гранями – зато стало понятно, что на него в принципе можно получить ответ. Однако научные исследования вышли за рамки чистой биологии и достигли более фундаментального уровня: откуда, собственно, берутся строительные кирпичики жизни, молекулы-носители информации, способные к самовоспроизведению? А с физической точки зрения – если искать еще более глубокие корни – откуда во Вселенной взялся атом водорода, столь важный для водородной связи, значение которой в структуре белковых молекул использовал Полинг? А более тяжелые элементы, тоже необходимые для жизни – углерод, кислород, азот и фосфор?
В первых исследованиях того, как четыре основания ДНК управляют синтезом белков из аминокислот, участвовал и Георгий Гамов, физик российского происхождения. Гамову показали статью Уотсона и Крика о генетических следствиях их модели, когда он был в Радиационной лаборатории в Беркли[280]. Он пришел в восторг и тут же начал размышлять над ней, а едва вернувшись на свой факультет в Университете Джорджа Вашингтона, тут же написал Уотсону и Крику письмо. Начиналось оно с извинений: «Дорогие доктор Уотсон и доктор Крик, я физик, а не биолог». Но дальше начиналось главное: не может ли быть такого, что отношения между четырьмя буквами, соответствующими основаниям в ДНК, и двадцатью аминокислотами в белках – это задача, которую можно решить простым численным криптоанализом? Математические решения, которые предложил Гамов, в конце концов оказались ошибочными, однако они помогли сформулировать вопросы в терминах теории информации.