что они верны), и мы создаем математические аксиомы. Все прямые углы конгруэнтны, параллельные линии никогда не пересекаются, параллельные линии пересекаются
всегда, существует по крайней мере одно бесконечное множество — все это аксиомы. Итак, у нас есть линии, круги и аксиомы — значит, должны быть и правила, чтобы манипулировать всем этим. Эти правила называются логикой. С помощью логики мы доказываем свои теоремы. Мы можем выбрать либо обычную логику, где утверждение либо верно, либо нет, либо одну из квантовых логик, где утверждение имеет степень вероятностного правдоподобия. С помощью логики мы превращаем свои простые, очевидные аксиомы в золотые теоремы невероятной мощи и красоты. С помощью нескольких логических ступеней мы доказываем, что в гиперболической геометрии прямоугольников не существует, что количество простых чисел бесконечно или что… мы можем доказать массу чудесных вещей, совсем не очевидных; мы можем сделать это, если мы умны, и если мы любим великолепие захлестывающего нас цифрового шторма, и если в нас горит священный огонь вдохновения.
Что же такое вдохновение? Откуда оно берется? Пробираясь сквозь искривленное пространство, я любовался Теоремой Кривых Лави и Второй Теоремой Трансформации, как прекрасными бриллиантами. Откуда берется математика? Как она рождается? Ну да, у нас есть аксиомы, логика и такие понятия, как «линия», но откуда вся эта абстракция взялась? Почему даже ребенок знает, что такое линия? Почему даргинни, настолько чуждые нам, настолько это возможно для инопланетян, мыслят по законам той же логики, что и человек?
Почему все именно так, а не иначе?
Я преодолел последнюю складку искривленного пространства и выпал в реальное — как блоха из одежды хариджана, если ту потрясти. Глядя на туманные звезды Тверди, я вспомнил старый-престарый ответ канторов: математика — это особый язык, языки же рождаются в мозгу. Но мозг эволюционировал пятнадцать миллиардов лет от мозга человека-обезьяны, а если брать глубже — от мозга еще более простых млекопитающих, от нервных клеток существ, плававших в теплых соленых водах нашего далекого прошлого. Если взять еще глубже, мы дойдем до бактериальных спор, принесших жизнь на Старую Землю. А откуда взялись они? Их создала Эльдрия? Кто тогда создал Эльдрию? Что такое жизнь? Жизнь — это информация и разум, заключенные внутри ДНК; это взрывное воспроизводство белковых молекул; это углерод, кислород, водород и азот, зарождающиеся в звездных ядрах. Сами же звезды рождает вселенная, эта гигантская фабрика по производству звезд; вселенная породила Беллатрикс, Сириус и голубые гиганты скопления Эде; из таких звезд, как Антарес и Канопус, собственно, и произошла жизнь. Каждый атом наших тел создавался в далеком небесном огне. Мы — дети звезд, мы — создания вселенной. И если наш рожденный звездами мозг воспринимает как должное «линию» и прочие элементы языка, надо ли удивляться тому, что «линия» является естественным смысловым понятием нашей вселенной? И что удивительного в том, что логика вселенной является также и нашей логикой? Канторы любят говорить, что Бог у нас — математик, и верят, что мы, создавая особый язык математики, учимся языку вселенной. Мы все, пилоты и математики, произносим слова этого языка, пусть в самой инфантильной, примитивной форме. Раз или два, размышляя, как чудесно подходит математика к контурам пространства-времени и к изгибам мультиплекса, я чувствовал, что вселенная говорит со мной ее языком — надо только уметь слушать. Но как этому научиться? Как заставить чистые ноты математики звучать более бегло? Что такое вдохновение?
Я продолжал свой путь в корабле, похожем на темный затхлый гроб, гораздо темнее камеры Хранителя Времени. Как семя, пробивающееся из земли на свет дня, рвался я из пут старого мышления, связывающих мое вдохновение. Как мне хотелось доказать Великую Теорему! Но это желание не было свободно от страха. Я снова и снова задумывался над природой собственного разума. Откуда у меня умение скраировать и мнемонировать? И кто знает, какие еще способности я могу обрести? Если я все-таки докажу свою теорему, будет ли доказательство действительно моим — или оно будет принадлежать агатангийскому информационному вирусу? Осмелюсь ли я взрастить семя вдохновения внутри себя, взлелеять его и вкусить его горько-сладкий плод?
Я шел по маршрутам Тверди через серию сгущений. Однажды, выйдя из мультиплекса в месте темном и похожем на межгалактическую пустоту, я чуть не запаниковал, но тут же обнаружил, что на самом-то деле нахожусь в центре сгущения! Фокусы были спрессованы, как икринки в брюхе у рыбы. Я не понимал, как это возможно. Только звезды (или разум) способны деформировать космос так, чтобы создалось сгущение. Быстро открыв окно, я прыгнул в мультиплекс, ушел в сон-время и стал думать об этом странном сгущении. Если мозг Тверди содержит такие чудеса, как беззвездное сгущение, какие чудеса могут заключаться в моем мозгу? Может быть, мне опять попытаться — попытаться как следует, до жжения в глазах и бурного прилива крови к мозгу — попытаться в тысячный раз доказать Гипотезу Континуума?
Как только эта мысль окрепла во мне, цифровой шторм усилился. Идеопласты строились и текли, бушуя перед моим внутренним взором. От волнения я почти утратил контроль над собой. В тысячный раз я обдумывал обманчиво простые условия Гипотезы, говорящие, что между любой парой фокусов дискретных множеств Лави существует прямой маршрут. Я разобрал это утверждение на части и исследовал каждую из них. Что такое множество Лави? Что такое фокус? Уверен ли я, что понимаю разницу между множеством Лави и дискретным множеством Лави? Как показать, что маршрут прямой, и, что еще важнее, как его составить? Сначала я пошел по проторенной дороге и вспомнил все мои старые попытки найти решение. Часто я обнаруживал, что мысль моя движется по кругу. Мелкость собственного мышления обескуражила меня. Как доказать то? Как доказать это? Как порвать ржавые цепи привычных, лишенных вдохновения мыслей?
Я попробовал представить задачу в иной форме, надеясь, что свежий взгляд на нее поможет мне увидеть очевидное. Мне удалось найти эквивалентную формулировку, но она оказалась еще более заумной, чем первоначальная. Я раскладывал Гипотезу на составные элементы, перестраивая их так и этак, — все напрасно. Я представлял части Гипотезы в виде картин, чтобы «увидеть» связи, которые мог проглядеть. Я обобщал Гипотезу, включая в нее все множества Лави, и играл с маршрутами специфических множеств Лави, хорошо изученных. Я пытался построить доказательство от противного и анатомировал родственные теоремы (Теорема Бумеранга Бардо входит в их число, хотя доказать ее гораздо проще). Я шел по длинным темным коридорам рассуждений, спускаясь на тысячи ступеней вниз; я ругался, тер глаза и виски — и