MyBooks.club
Все категории

Мартин Гарднер - Математические головоломки и развлечения

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Мартин Гарднер - Математические головоломки и развлечения. Жанр: Развлечения издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Математические головоломки и развлечения
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
20 октябрь 2019
Количество просмотров:
335
Читать онлайн
Мартин Гарднер - Математические головоломки и развлечения

Мартин Гарднер - Математические головоломки и развлечения краткое содержание

Мартин Гарднер - Математические головоломки и развлечения - описание и краткое содержание, автор Мартин Гарднер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.

Математические головоломки и развлечения читать онлайн бесплатно

Математические головоломки и развлечения - читать книгу онлайн бесплатно, автор Мартин Гарднер

Изготовив набор из 30 шаров, читатель намного облегчит себе понимание того, о чем мы расскажем в этой главе. Лучше всего взять 30 теннисных мячей. Мячи можно покрыть тонким слоем резинового клея и, высушив, складывать из них великолепные модели тех упаковок, о которых сейчас пойдет речь.

Для начала совершим небольшой экскурс в двумерные задачи аналогичного содержания. Если шары разложить на столе в виде квадрата (рис. 205, справа), то число шаров будет одним из так называемых «квадратных» чисел. Если же шары разложить в виде треугольника (см. рис. 205, слева), то число шаров будет одним из «треугольных» чисел. И квадратные и треугольные числа служат простейшими примерами того, что в древности было принято называть «фигурными числами». В старину их изучением занимались многие математики (знаменитый трактат о фигурных числах написал Паскаль), и хотя в наше время им уделяют мало внимания, они позволяют интуитивно понять многие аспекты элементарной теории чисел.

Достаточно, например, одного лишь взгляда на левую часть рис. 205, чтобы понять, что сумма любого числа целых положительных слагаемых, начинающихся с единицы, равна треугольному числу. Взглянув на правую часть рис. 205, мы сразу же заметим, что квадратные числа получаются при сложении последовательных нечетных чисел, начинающихся с 1.



Рис. 205 Происхождение треугольных (слева) и квадратных (справа) чисел.


Рис. 206 позволяет сразу же понять интересную теорему, известную еще пифагорейцам: всякое квадратное число есть сумма двух последовательных треугольных чисел. Алгебраическое доказательство этой теоремы просто.


Рис. 206 Связь между квадратными и треугольными числами.


Треугольное число, выражающее количество шаров, уложенных на плоскости в виде треугольника со стороной из п шаров, равно сумме 1 + 2 + 3 +.. + n, которую можно представить в виде 0.5n(n + 1).

Предыдущее треугольное число дается формулой 0.5n(n-1). Сложив оба выражения и вычеркнув члены с противоположными знаками, мы получим n2. Существуют ли числа, которые бы в одно и то же время были и квадратными и треугольными? Оказывается, существуют, причем их бесконечно много. Наименьшее из таких чисел (если не считать единицы, которая входит в любую последовательность фигурных чисел) равно 36, затем идут 1225, 41616, 1413721, 48 024 900… Вывести формулу для n-го члена этой последовательности довольно трудно.

Трехмерные аналоги плоских фигурных чисел возникают при укладке шаров в пирамиды. Правильные треугольные пирамиды, все грани и основание которых имеют вид равносторонних треугольников (такие пирамиды называются тетраэдрами), порождают так называемые тетраэдрические числа. Последовательность этих чисел выглядит так: 1, 4, 10, 20, 35, 56, 84… Общий член ее выражается формулой 1/6∙n(n + 1)(n + 2), где n — число шаров, уложенных вдоль ребра пирамиды. Четырехугольные пирамиды с квадратом в основании и боковыми гранями в форме равносторонних треугольников (то есть половинки правильного октаэдра) порождают (четырехугольные) пирамидальные числа 1, 5, 14, 30, 55, 91,140…. Общий член этой последовательности дается формулой 1/6∙n(n+1)(2n + 1). Подобно тому как квадрат можно разрезать вдоль прямой на два последовательных треугольника, четырехугольную пирамиду можно рассечь плоскостью на два последовательных тетраэдра. (При построении моделей пирамид, порождающих пирамидальные числа, нужно следить за тем, чтобы шары нижнего слоя не раскатывались в стороны. Их можно удерживать на месте с помощью бортиков из линеек или дощечек.)

Свойства двух названных нами типов пирамидальных чисел легли в основу многих занимательных задач. Предположим, например, что городские власти собираются поставить на одной из площадей города памятник в виде четырехугольной пирамиды, сложенной из пушечных ядер.

Какое наименьшее число ядер нужно взять для того, чтобы их сначала можно было уложить в виде квадрата, а затем — в виде четырехугольной пирамиды, грани которой имеют форму равносторонних треугольников? Самое удивительное в ответе (4900 ядер) — его единственность. Доказательство этой задачи сложно и было получено лишь в 1918 году. Другой пример: продавец фруктов уложил апельсины в виде двух тетраэдров, но потом передумал и уложил их в виде одного большого тетраэдра. Каким должно быть наименьшее число апельсинов для того, чтобы их можно было уложить и в виде двух маленьких, и в виде одного большого тетраэдра? Если оба меньших тетраэдра одинаковы, то ответ единствен: 20 апельсинов. А как обстоит дело, если меньшие тетраэдры неодинаковы по размеру?

Представим теперь, что у нас очень большая коробка, что-то вроде тех ящиков, в которые упаковывают при перевозке пианино, и мы хотим наполнить ее как можно большим числом теннисных мячей. Как нужно для этого укладывать мячи? Прежде всего мы должны уложить слой мячей так, как показано на рис. 207 (окружности, проведенные тонкими линиями).



Рис. 207 При гексагональной упаковке шары следует класть в ямки А, при кубической — в ямки В.


Второй слой мячей следует укладывать поверх зазоров между мячами первого слоя (на рисунке второй слой обозначен окружностями, проведенным более жирными линиями). Приступая к укладке третьего слоя, мы сталкиваемся с необходимостью отдать предпочтение одному из двух возможных вариантов:

1. Каждый мяч можно положить в ямку, помеченную буквой А, то есть поместить его прямо над мячом первого слоя. Если, продолжая укладку, мы будем каждый раз помещать мячи очередного слоя строго над мячами слоя, расположенного через ряд под ним, то мячи образуют так называемую плотную гексагональную упаковку.

2. Каждый мяч можно поместить в углубление В, прямо над зазором между мячами первого слоя. Если придерживаться этого способа укладки мячей (при котором каждый новый мяч располатается прямо над мячом, лежащим на три слоя ниже), то в результате получается так называемая плотная кубическая упаковка.

Именно так упакованы шары, сложенные в виде четырехугольной пирамиды с боковыми гранями, имеющими форму равносторонних треугольников, и в виде тетраэдров. Различие состоит лишь в том, что в четырехугольной пирамиде слои располагаются параллельно боковым граням, а в тетраэдре — основанию.

При заполнении слоев плотной упаковки мы можем при желании переходить от гексагональной упаковки к кубической и наоборот и получать различные «гибридные» формы плотнейших упаковок. Во всех плотных упаковках — гексагональной, кубической и гибридных — каждый шар касается двенадцати соседних шаров и плотность упаковки (отношение объема, занятого шарами, к объему всего пространства) равна

или почти 75 %.

Следует ли такую плотность считать наибольшей? Более плотные упаковки неизвестны, но в статье о связи между плотной упаковкой и порами в застывшей пене (1958) Г. С. М. Коксетер высказал интригующее замечание о том, что наиболее плотная упаковка еще не найдена. Действительно, двенадцать шаров можно расположить так, что все они будут касаться одного и того же центрального шара, и лишь немногого не хватает, чтобы к этим двенадцати можно было добавить тринадцатый шар. Большие пустоты в расположении двенадцати шаров вокруг центрального шара наводят на мысль о том, что при некоторой неправильной упаковке плотность может оказаться выше 0,74… (для сравнения напомним, что при плотнейшем расположении кругов на плоскости пустот, размеры которых были бы сравнимы с диаметром круга, вообще нет). Никому еще не удалось доказать, что упаковка с плотностью, превышающей 0,74…, невозможна. Не доказано даже, что касание с двенадцатью соседними шарами необходимо для плотнейшей упаковки. Высказанная Г. С. М. Коксетером гипотеза побудила Джорджа Д. Скотта проделать ряд экспериментов с шарами, упакованными случайным образом. Он насыпал большое количество стальных шариков в сферические колбы и взвешивал их. Полученные Скоттом результаты показали, что устойчивые случайные упаковки соответствуют плотностям в диапазоне от 0,59 до 0,63. Это означает, что если упаковка с плотностью, большей 0,74…, и существует, то строить ее необходимо по тщательно продуманной схеме, которая еще никому не известна.

Приняв плотную упаковку за плотнейшую, мы сможем предложить читателю очень трудную задачу: чему равно наибольшее число стальных шариков диаметром 1 см, которые могут уместиться в квадратной коробке размером 10 х 10 х 5 см?

Если плотно упакованные круги на плоскости равномерно «раздувать» до тех пор, пока не заполнятся все промежутки между ними, то получится узор, напоминающий пол в ванной комнате, выложенный шестиугольными плитками. (Кстати сказать, этим и объясняется столь широкое распространение «шестиугольного паркета» в природе: в пчелиных сотах, в пене между двумя почти соприкасающимися плоскими поверхностями, в пигментах на сетчатке глаза, на поверхностях некоторых диатомей и т. п.) А что произойдет с плотно упакованными шарами, если их равномерно расширять в замкнутом сосуде или подвергать равномерному давлению извне? Каждый шар, оказывается, превратится в многогранник (грани которого соответствуют касательным плоскостям, проведенным в точках касания шара с соседними шарами). При кубической упаковке каждый шар превращается в ромбический додекаэдр (рис. 208, а), все двенадцать граней которого имеют вид одинаковых ромбов. При гексагональной упаковке каждый шар переходит в трапецеромбический додекаэдр (рис. 208, б), у которого шесть граней имеют вид ромбов, а другие шесть — трапеций.


Мартин Гарднер читать все книги автора по порядку

Мартин Гарднер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Математические головоломки и развлечения отзывы

Отзывы читателей о книге Математические головоломки и развлечения, автор: Мартин Гарднер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.