Солнечная энергия даже зимой может легко использоваться для отопления загородного дома. Весной и осенью, когда часто бывает солнечно, но холодно, солнечное отопление помещений загородного дома позволит не включать дополнительного отопления. Это дает возможность сэкономить часть энергии, а соответственно, и деньги.
Для загородных домов, которыми редко пользуются, или для сезонного жилья солнечное отопление особенно удобно зимой, так как исключает чрезмерное охлаждение стен, предотвращая их разрушение от конденсации влаги и плесени.
Таким образом, ежегодные эксплуатационные расходы могут существенно снизиться. Но можно ли создать проект солнечного отопления загородного дома для районов средней полосы с большим числом облачных дней? До недавнего времени это считалось экономически нецелесообразным.
Все сомнения экспертов были опровергнуты талантливым американским инженером и изобретателем Норманом Б. Саундерсом, разработавшим интегральную систему воздушного отопления, охлаждения и вентиляции для суперсолнечного дома Cliff House.
Описание Cliff House представляет интерес по следующим причинам:
– в этом доме, построенном на холодном и облачном северо-востоке США, достигнуто 100%-ное солнечное отопление простыми и дешевыми средствами;
– дом и все его системы были построены самим владельцем;
– все узлы и конструкции можно изготовить самому.
Ничего необыкновенного в проектировании домов с солнечным отоплением нет. Конечно, вы понимаете, что построить подобный дом в Средней Азии относительно несложно, а на полуострове Таймыр экономически нецелесообразно.
Такие дома существуют и в Европе. Кроме того, есть несколько различных подходов к проектированию. Почему предлагается система солнечного отопления Нормана Саундерса, а не другие, не менее эффективные системы?
Большинство систем солнечного отопления, как правило, весьма сложны и дороги, а поэтому при таком уровне доходов населения, как в России, применяются крайне редко. Можно, конечно, использовать и самые простейшие системы, но они не обеспечат большого запаса мощности.
Солнечное отопительное оборудование для Сliff House можно изготовить самому.
Все солнечное оборудование дома состоит из:
– абсорбера в виде вертикальных жалюзи;
– жидкостного аккумулятора (пластиковых бочек с водой);
– воздушного гравийного аккумулятора;
– двух датчиков температуры, управляющих скоростью двух вентиляторов;
– теплообменника для системы горячего водоснабжения.
Все это смехотворно дешево, но обеспечивает высокую эффективность.
Однако солнечная отопительная установка Cliff House имеет запас мощности 20%, в то время как понадобился бы запас мощности более 50%, поскольку в средней полосе европейской части России достаточно много облачных дней при большей отопительной нагрузке, чем в Бостоне. В наших условиях на сегодняшний день экономически целесообразнее обеспечивать солнечным теплом примерно 70% отопительной нагрузки, но и в этом случае по сочетанию эффективности и качества альтернативы Cliff House нет.
Одним из прогрессивных методов отопления помещений большой площади является лучистое отопление, которое, по сравнению с классическим паровым и газовым отоплением, требует значительно меньших затрат. Экономия достигается как в потреблении сжигаемого топлива, так и в общих, более низких затратах на отопление.
Однако вопреки этой бесспорной выгоде лучистого отопления отношение заказчиков к данному типу отопления пока очень осторожное. Они часто выбирают более традиционные системы отопления, порой не вполне подходящие для больших помещений.
Недоверие заказчиков связано, с одной стороны, с закрепившимся стереотипом – в советское время для отопления промышленных помещений большой площади использовали системы с центральными котельными, а с другой, – с незнанием физического принципа лучистого отопления. К тому же, по правде говоря, разработка проекта лучистого отопления сложнее, и в нем необходимо учитывать множество условий, влияющих на тепловой комфорт человека, находящегося в зоне лучистого отопления.
Попытаемся рассказать подробнее о лучистом отоплении.
Прежде всего, что такое тепло и как человек его чувствует? Как нас учили в школе, температура вещества – это одно из проявлений его энергии, например тепловой вибрации молекул вещества. Эта энергия распространяется в основном тремя способами:
1. Конвекцией, или распространением воздуха.
2. Кондукцией, то есть проводимостью.
3. Электромагнитными волнами, или излучением.
Первый и второй способы передачи энергии – конвекцию и кондукцию – как раз и используют конвекционные тепловоздушные отопительные системы. В этом случае тепловая энергия воздуха, согретого конвекторами или тепловоздушными обменниками, распространяется в пространство постепенной передачей энергии (тепла), причем сам источник энергии охлаждается.
Необходимым условием такого распространения тепла является вещественная среда, так как передача энергии (тепла) происходит при непосредственном соприкасании молекулы вещества с более высокой температурой с молекулой более низкой температуры. Человек в отапливаемом пространстве становится составной частью системы и ощущает тепло как непосредственную тепловую энергию окружающего воздуха и предметов, с которыми соприкасается. Таким образом, для конвекционно отапливаемого пространства действителен закон, согласно которому температура воздуха (tv), согретого конвекторами, выше или равняется температуре окружающих предметов (tр), которые должны быть согреты этим воздухом.
Над другим способом распространения тепловой энергии – излучением – мы часто даже не задумываемся, хотя с ним встречаемся каждый день. Этим способом Солнце передает свою тепловую энергию поверхности Земли, от которой впоследствии нагревается воздух. В данном случае речь идет о передаче тепла электромагнитным излучением определенной длины волны.
Энергия электромагнитного излучения трансформируется в тепло после попадания излучения на поверхность предметов, которые данную энергию поглощают. Здесь действительна физическая симметрия между излучением и поглощением энергии черного тела. Если мы нагреваем тело, оно начинает излучать электромагнитные волны (энергию) в окружающее пространство. Если данная энергия поглощается другим телом, это приводит к нагреванию этого тела, что и используется при лучистом отоплении. В этом случае лучистые отопительные устройства, которые размещают на определенной высоте над полом, излучают электромагнитные волны, которые с очень незначительными потерями проходят через воздух, поглощаются полом, вследствие чего повышается температура пола и предметов, на которые попадает излучение. Согретый таким образом пол нагревает воздух.
Влияние лучистого отопления на человека можно сравнить с прогулкой в солнечный весенний день. Температура воздуха еще не достаточно высокая, однако солнечные лучи уже согревают землю, и человек ощущает их как приятное тепло.
Упомянутое выше равенство между температурами воздуха и предметов в обоих случаях действительно только в домах с качественной теплоизоляцией.
Приведенные свойства можно отобразить следующим образом:
1. Передача тепла конвекцией: tv > tр.
2. Передача тепла: конвекционное тело – согревание воздуха – согревание человека.
3. Передача тепла излучением: tv < tр.
4. Излучающее устройство: согревание предметов и человека – согревание воздуха.
Для того чтобы сравнить эффективность конвекционного и лучистого отопления в типичном промышленном помещении, попробуем проанализировать требования к состоянию теплового комфорта человека и энергетические параметры обеих систем отопления.
Тепловой комфорт можно определить как приятные ощущения человека в отапливаемом пространстве. На тепловые ощущения человека и его комфорт влияют несколько факторов, из которых самими важными являются:
– температура воздуха tv (°С);
– температура плоскостей, ограничивающих интерьер, – tu (°С);
– скорость перемещения воздуха в помещении – w (ms-1);
– тепловое сопротивление одежды – Rc (m2.K.W-1);
– уровень активности человека – Q (W);
– относительная влажность среды – ф (%).
Температура воздуха в помещении обычно относится к первичным критериям оценки теплового состояния отапливаемого помещения. Этот критерий вместе со скоростью перемещения воздуха определяет конвекционную передачу теплового потока от человека к окружающему пространству.
В обычных отапливаемых домах при температуре 18–20° С допускается движение воздуха не более 0,1 м/с. Идеальное отопление должно было бы обеспечить такое вертикальное распределение воздуха в помещении, при котором температура на уровне высоты головы человека (приблизительно 1,7 м над полом) была бы примерно на 2° С ниже, чем на уровне 10 см над полом.