Здесь, вероятно, вполне уместно сказать, что коллектив филиала отличается удивительным чутьем на новое, творческим подходом к решению самых сложных, но и самых злободневных проблем. Знаю это по опыту совместной работы ИОНХа с бориславскими коллегами над созданием промышленною способа получения муравьиной кислоты, о чем речь еще впереди.
Завершить же СБОЙ рассказ об одном из 50 тысяч соединений, синтезированных советскими химиками, хочу краткой характеристикой нового вещества: хромоксанпри всей дешевизне в девять раз долговечнее хромина, а требуется его, чтобы практически полностью предотвратить потери хрома, в 13.5 раза меньше. Покрытия, наносимые методом электролиза с добавками хромоксана, оказываются удивительно монолитными, поскольку соединение действует еще на стадии образования пузырьков водорода. По крайней мере, хромирование титана - важнейшего и необходимейшего для всех приоритетных направлений научно-технического прогресса металла, стало вя"- можиым только после применения хромоксановой добавки. Она, без всякого преувеличения, счлит народному хозяйству миллионные прибыли.
Химии под стать и превращения другого рода. Она, к примеру, может так изменить, облагородить, "перекроить" существующий испокон веков материал, что он приобретает новые, не значившиеся за ним прежде достоинства и свойства. Недаром же в двери химических лабораторий все чаще стучатся энергетики и машиностроители, медики и пищевики, микробиологи и фармацевты, строители и аграрники. И чем невиданней заказ, тем интереснее работать над ним.
Иногда приходится объединить в одном и том же материале "лед и пламень". Как уж тут не вспомнить удивительную сказку о снежной королеве, несколько переиначенную в недавней телевизионной постановке? В ней по воле сценариста королеве с ледяным сердцем (играет ее. как всегда превосходно, Алиса Фрейндлих), которой и теплый ветер - серьезная угроза, захотелось вдруг горячего молока. Но то - сказка. А если в жизни, в технике необходимо совместить, казалось бы, абсолютно несочетаемые свойства в одном и том же материале? Ну, например, такие, как способность поглощать тепло и одновременно защищать от него заданную поверхность.
Вот такую нелегкую задачу поставила перед моей наукой в свое время космонавтика. И химия блестяще с ней справилась, создав расплавляемые и уносимые набегающим потоком газа материалы, получившие название абляционных.
Обмазки, созданные на их основе, надежно защитили от перегрева и сгорания при входе в атмосферу наши космические летательные аппараты и головные части ракет-носителей. Они же успешно охладили камеры ракетных двигателей.
Если специальной обмазкой, обладающей такими способностями, покрыть несущие деревянные конструкции в здании, они окажутся для огня неуязвимыми. И если уж в химическом цехе и случится пожар, то опоры межэтажных перекрытий, обработанные такой обмазкой, окажутся под надежной теплозащитой. Ее обеспечит вспучившаяся поверхность. А что значит выиграть при пожаре дополнительные минуты, говорить не приходится. Аварийная ситуация ликвидируется. Но обмазки - вещества "экзотические", с редким применением. Да и пожары, к счастью, случаются не каждый день.
Надо сказать, что, помимо явных "отклонений" от нормы, эти новые материалы еще и не вписывались в силу своей специфичности в многочисленное конструкционное семейство, поскольку последнему вменяется в обязанность противостоять внешним силам и не разрушаться под их воздействием. И хочешь - не хочешь на повестке дня появился вопрос: какие же материалы можно считать собственно конструкционными? Те, "традиционные", которым в качестве основного свойства положено обладать заданной удельной прочностью или жестокостью?
А если крайне важным для повседневной научной и инженерной практики оказываются материалы с иными достоинствами, в которых на первый план выступают то же абляционные свойства или повышенное сопротивление коррозии, или, наконец, диэлектрические характеристики?
Вот и пришлось изменить "устав" конструкционных материалов, внося в него поправки с учетом требовании развивающейся техники. Однако в настоящее время и конструкционные (то есть используемые при конструировании машин и аппаратов материалы о заранее определенными конкретными свойствами), и специально синтезированные химией по заказу различных отраслей науки и техники материалы все чаще называют общим именем - новые. Сюда относят и композиционные материалы или, как их все чаще сегодня называют, композиты.
Что же принято сегодня называть композиционными материалами? Это материалы из металлической или неметаллической основы (матрицы) с заданным распределением в ней упрочнителя. В качестве последнего могут выступать всевозможные волокна и даже кристаллы. Прообразом композитов считается железобетон.
Композиционных материалов сегодня множество, и "семейство" их постоянно увеличивается, а основные их качества становятся все более разнообразными. Всю эту богатейшую номенклатуру делят на несколько групп.
Наибольший интерес для техники и приоритетных направлений научно-технического прогресса представляют армированные волокнами или нитевидными кристаллами, и слоистые, где упрочнитель - материалы, полученные путем прокатки или прессования. Разумеется, такое разделение композитов весьма условно.
Среди новых материалов сотни любопытнейших.
Иные уже освоены промышленностью, другие стоят на заводских порогах, ожидая применения. Взять, к примеру, конструкционную техническую керамику.
К ней, не преуменьшая ведущей роли металлических конструкционных материалов, исследователи проявляют все больший интерес. Правда, речь идет в данном случае не о традиционных видах керамических материалов, а о новых материалах на основе специальной жаростойкой и ударопрочной керамики. В настоящее время работы в этой области продвинулись вперед настолько, что, по-видимому, в ближайшие годы именно они станут одним из важнейших промышленных конструкционных материалов наряду с металлами, вяжущими веществами на основе цемента и полимерами.
Основа специальной технической керамики - оксиды (окислы), нитриды, карбиды, силициды, бориды и алюмосиликаты некоторых металлов. Большой интерес, в частности, представляют нитриды кремния, бора и титана, оксиды алюминия, кремния, бериллия, титана, цинка, циркония и других металлов, карбиды кремния, бора, титана и т. п. Материалы на основе этих веществ обладаю:
многими достоинствами: малый удельный вес, высокая прочность и твердость, неограниченная сырьевая база (азот, кислород, кремний, углерод, как известно, наиболее распространенные элементы в природе).
Одно из основных направлений исследований - повышение ударной вязкости хрупких по своей природе керамических материалов. Это достигается лишь при использовании сверхчистых ультратонких порошков, а также путем легирования некоторыми оксидами металлов (например, алюминия, магния), графитом и др. Хорошие результаты дает армирование керамических материалов волокнами углерода, карбида кремния и оксида алюминия.
Среди важнейших и наиболее прогрессивных направлений, развитию которых в последнее время уделяется особое внимание, - создание керамических материалов для деталей двигателей. Наиболее широкое использование керамики ожидается в перспективе в газотурбинных и так называемых адиабатических дизельных двигателях, то есть ие получающих тепла извне и не отдающих его.
При работе газотурбинного двигателя с ротором из карбида кремния или нитрида кремния допустимы температуры порядка 1400 градусов Цельсия, в то время как лишь немногие из специальных сплавов могут работать при 1100 градусах.
Адиабатические двигатели внутреннего сгорания с деталями из керамики для легковых и грузовых автомобилей также имеют ряд преимуществ по сравнению с традиционными. Благодаря большой теплостойкости они ие требуют водяного охлаждения. По прогнозам это позволит не менее, чем на 30 процентов, повысить эффективность использования дизельного топлива.
Работы по синтезу и использованию новых керамических материалов в некоторых странах в последнее время ааметно продвинулись, особенно в Японии и США.
У пас они то/ко ведутся и сразу несколькими организациями. Однако усилия, к сожалению, все еще разрозненны. Нечего скрывать - мы здесь несколько отстали от твоих зарубежных коллег не только в экспериментальном плане, но и в фундаментальных исследованиях; а они необходимы. Прежде всего потому, что еще предстоит обеспечить конструкционной керамике требуемую ударную вязкость и решить проблемы армирования. Да л гам метод получения армирующих волокон тоже нуждается в совершенствовании.
Программа исследований в области новых керамических материалов уже составлена. Она объединяет усилия многих научных учреждений страны металловедческого профиля, и в том числе ряда академических институтов.