Древесина оказывается слабой при сжатии вдоль волокна. В этом отношении ее свойства противоположны свойствам чугуна, который прочен при сжатии, но слаб при растяжении. Здесь опять модель пучка склеенных между собой волокон оказывается очень реалистичной.
Под сжимающей нагрузкой тонкая стенка одной из трубок теряет устойчивость, на ней образуется складка, а все остальные трубки должны следовать за ней (рис. 39). Прочность на сжатие ели обычно лежит в пределах 3,0- 3,5 кГ/мм2. Если сравнивать эти цифры со сталью по удельной прочности (по отношению к плотности), то они выглядят все еще вполне сносно, но, конечно, далеко не так, как удельная прочность на разрыв.
Рис. 39. Разрушение древесины при сжатии. На чистой плоской поверхности, параллельной направлению волокон, место разрушения видно невооруженным глазом. Здесь бегут «складки» под углом 45° к направлению волокон.
Когда древесина начинает разрушаться от сжатия, можно видеть легкую линию складок на волокнах, бегущую под углом 45° к направлению волокон, но рассмотреть ее целиком довольно трудно: для этого нужно иметь чистую поверхность и знать, что и где искать. В течение некоторого времени после начала разрушения (складкообразования) ничего особенно сенсационного или катастрофического не случается, материал лишь постепенно проседает. Поскольку древесина чаще всего нагружается изгибом, то в результате медленного разрушения на сжатой стороне балки нагрузка передается на растянутую сторону. Поэтому номинальное напряжение в изогнутой балке перед окончательным разрушением может быть вдвое больше прочности на сжатие. Это обстоятельство делает деревянные конструкции очень надежными.
Древесина в некотором смысле вещь довольно зловредная: прежде чем появится реальная опасность разрушения, деревянная конструкция может немало потрепать вам нервы пугающими звуками. Планеры не имеют двигателя (они часто запускаются канатом примерно километровой длины, который наматывается на барабан лебедки), поэтому в полете - абсолютная тишина, нарушаемая лишь свистом ветра. И вот при быстром резком запуске деревянный планер будет пугать вас скрипами, тяжелыми вздохами, иногда даже грохотом. Это, естественно, встревожит вас, но скоро вы поймете, что все это притворство и никакой опасности разрушения конструкции нет. Такое представление может повторяться несколько раз на дню. Я почти уверен, что эти шумы не сопровождают процесса разрушения при сжатии. Часто я задавался вопросом, откуда они исходят, но, должен сознаться, никаких идей на этот счет у меня не появилось. Можно сказать одно - если вы слышите деревянную конструкцию, вряд ли вы ее сломаете.
Итак, по удельной прочности древесина вполне конкурентоспособный материал. Но одной лишь прочности практике недостает, ей нужна еще и соответствующая жесткость: вещества вроде нейлона прочности имеют предостаточно, но для инженерных сооружений жесткость их слишком мала. Модуль Юнга для ели составляет примерно 1000-1500 кГ/мм2, жесткость других- пород более или менее пропорциональна их плотности. Удивительно, но удельный модуль Юнга для древесины почти в точности равен удельному модулю стали и алюминия и намного больше, чем у синтетических смол. Такая жесткость вместе с малой плотностью делает дерево очень подходящим материалом для балок и колонн. Мебель, полы, книжные полки, флагштоки, мачты парусников лучше всего делать деревянными. В Америке в XIX веке очень быстро и дешево было построено много железных дорог, отчасти это случилось благодаря высокой эффективности. железнодорожных мостов на деревянных эстакадах. Вместе с этими достоинствами древесина, однако, обладает недостатком - она ползет. Это означает, что при достаточно длительной нагрузке материал постепенно деформируется. Следствие ползучести - вогнутые деревянные крыши старых домов и сараев. Из-за ползучести древесины нельзя оставлять надолго натянутыми деревянный лук или струны скрипки. По-видимому, причина ползучести состоит в том, что плохо закрепленные гидроксильные группы аморфных областей целлюлозы, пользуясь изменениями температуры и влажности, увиливают от своих обязанностей. Маловероятно, чтобы сколько-нибудь заметно ползла кристаллическая целлюлоза.
Несомненно, природа при желании могла бы химически соединить молекулы целлюлозы вдоль “боков”. Но тогда они были бы увязаны между собой очень надежно, и материал имел бы примерно одинаковую прочность во всех направлениях. Как мы уже видели в предыдущей главе, наличие слабых плоскостей, параллельных прочнейшему направлению, является, по-видимому, условием прочности и вязкости для материалов такого типа. Если бы такие поверхности отсутствовали, древесина походила бы на глыбу сахара - была бы однородной, но непрочной и хрупкой. Если судить по удельному весу древесины, то нет ничего плохого в ее механических свойствах. Обычно вес деревянных конструкций сравним по крайней мере с весом сооружений из металла. Плохо в древесине другое - она подвержена воздействию влаги. Вода может попадать в древесину под дождем, в реке, в море и т. д., но хуже всего то, что на древесину действует атмосферная влага.
При каждой данной температуре воздух может содержать определенное количество влаги. Любой избыток влаги выпадает в виде дождя, тумана, дымки или росы. Воздух в этом случае называется пересыщенным, и, следовательно, относительная влажность в сырой день равна примерно 100%. В сухую погоду или в помещении относительная влажность меньше, но она редко падает многим ниже 30%, даже в местах с сухим жарким климатом.
Древесина всегда стремится быть в равновесии с относительной влажностью окружающего воздуха. После длительной выдержки во влажном воздухе древесина может содержать 22-23% воды. В очень сухом воздухе содержание влаги в дереве может упасть до 5%. Однако связанные с этим колебания веса материала имеют второстепенное значение по сравнению с влиянием влажности на свойства древесины, в частности на ее усадку или разбухание. Каждый процент изменения влажности дает около половины процента усадки или разбухания. Обычные колебания влажности воздуха могут вызвать колебания поперечных размеров от 5 до 10%, то есть до 1 см на доску шириной 10 см. И если плотники-любители, располагая выбором, предпочтут использовать широкие доски, то профессионалы будут мудрее: они возьмут узкие доски, чтобы уменьшить перемещения в каждом отдельном стыке. Конечно, 5-10% усадки или разбухания не так уж часто случаются, но и 1-2% могут вызвать много неприятностей. Краски и лаки снижают колебания влажности в дереве, но не исключают их, так как нет красок, совершенно не проницаемых для паров воды.
Даже в помещении относительная влажность непрерывно изменяется, особенно между дневным и ночным временем. Полы и мебель “следят” за влажностью воздуха, а отсюда - скрипы и треск по ночам. Если каким-то образом удержать древесину от усадки при уменьшении влажности, она будет расщепляться: ведь она почти не имеет прочности на разрыв поперек волокон. Если геометрически ограничить возможность древесины разбухать, то при увеличении влажности может возникнуть весьма значительное давление. Египтяне использовали это давление для откалывания огромных глыб в каменоломнях, так была получена игла Клеопатры[37].
Предварительно форма будущего куска размечалась канавкой на поверхности, эта же канавка служила концентратором напряжений. Затем вдоль канавки долбились глубокие отверстия, в которые загонялись сухие деревянные колья. Их заливали водой, и, пропитавшись влагой, дерево раскалывало камень вдоль требуемой линии.
Усадка морских канатных снастей и парусной ткани - в принципе то же самое. Отдельные волокна с изменением влажности изменяют не длину свою, а толщину, а остальное делает геликоидная геометрия каната и текстильной пряжи: веревки и одежда, намокая, становятся короче. Льняные паруса были особенно пористыми, и, чтобы уменьшить пористость, их замачивали.
Итак, мы видим, что самым важным следствием воздействия влажности на древесину является ее разбухание. С практической точки зрения влияние влажности на механические свойства, пожалуй, менее существенно. До предела намоченное дерево сохраняет примерно третью часть прочности и жесткости совершенно сухого дерева. Биологические материалы всегда работают в насыщенном состоянии - таким образом, ценою потери прочности снимается проблема усушки и разбухания. В технике целлюлоза никогда не используется в идеально сухих условиях, поэтому величины прочности и жесткости ее совсем не так плохи, как иногда это может показаться,
Сырую древесину гнуть немного легче, чем сухую; но больше всего облегчает гибку дерева нагрев. Так, прежде чем гнуть древесину для теннисных ракеток или шлюпочных шпангоутов, ее пропаривают. Часто считают, что пар делает с древесиной что-то особенное. Это неверно, просто пропаривание - всего лишь удобный путь нагрева древесины без ее высушивания, и механизм действия здесь в точности тот же, какой используют парикмахеры для завивки волос. Иногда древесину перед гибкой оборачивают влажными горячими тряпками. Эта операция помогает термической изоляции древесины, сохраняет ее тепло, предохраняет от слишком быстрого охлаждения. Древесина может без особого для себя вреда выдержать “влажный” нагрев примерно до 140°С, однако сухой нагрев, конечно, вызовет растрескивание вследствие усушки.