Но самое главное различие между моделями заключается в наборе параметров, с помощью которых я характеризую каждый сигнал, входящий в распознающий модуль, в частности параметров величины и ее вариабельности. В 1980-х гг. мы пытались распознавать человеческую речь без учета информации подобного рода. Тогда лингвисты уверяли нас, что информация о длительности сигнала не играет решающей роли. Такой подход используется в словарях, в которых произношение каждого слова передается в виде последовательности фонем. Например, слово steep записывается как последовательность звуков [s], [t], [E] и [p] без указания ожидаемой длительности каждой фонемы. В результате, если созданная нами программа, способная распознавать фонемы, встречает в речи эту специфическую последовательность четырех фонем, она сможет распознать слово. Созданная по такому принципу программа работала, но недостаточно хорошо, чтобы справляться с большим набором слов, распознавать речь нескольких говорящих или слова, произнесенные без пауз. Качество программы выросло в значительной степени, когда мы с помощью иерархических скрытых моделей Маркова ввели для каждого входного сигнала параметр распределения величины.
Глава четвертая
Биологическая новая кора
Поскольку дело серьезное, вам понадобится череп для вашего мозга, пластиковый футляр для расчески и бумажник для денег.
Джордж Костанца
, персонаж американского телесериала «Сайнфилд», 1998Теперь мы впервые наблюдаем за работой мозга в глобальном плане с такой ясностью, что сможем найти общие программы его удивительных способностей.
Дж. Тейлор, Б. Горовиц, К. Фристон[41]
Работу мозга над полученной информацией можно в определенной степени сравнить с работой скульптора над каменной глыбой. В том смысле, что статуя всегда находилась внутри камня. Однако кроме нее в камне хранились еще тысячи других, и только благодаря скульптору из него была извлечена именно эта. Так же и мир каждого из нас, как бы по-разному мы его ни воспринимали, погружен в изначальный хаос ощущений, который всем нам дает одинаковую материю для размышлений. Если захотим, мы можем мысленно повернуть время вспять к той черной и единой бесконечности пространства и движущихся и роящихся атомов, какую наука называет единственным реальным миром. Но все-таки мир, который мы воспринимаем и в котором живем, такой, какой наши предки и мы сами постепенно высекали из этого первозданного пространства, просто отделяя определенные фрагменты. Другой скульптор – другая статуя из того же камня! Другой разум – другой мир из того же самого монотонного и невыразительного хаоса! Мой мир – лишь один из похожих вкрапленных миров, столь же реальных для тех, кто умеет абстрагироваться. Сколь другим, должно быть, является мир в сознании муравья, каракатицы или краба!
Уильям Джемс[42]
Является ли разум главной целью или лишь одной из целей биологической эволюции? Стивен Пинкер[43] пишет: «Мы рассматриваем свой мозг в качестве вершины эволюции[44]… но это [мнение] неоправданно… поскольку естественный отбор не имеет никакого отношения к развитию интеллекта. Этот процесс определяется различием в выживаемости и воспроизводстве организмов в специфических условиях окружающей среды. Со временем организмы приобретают черты, позволяющие им адаптироваться к жизни и воспроизводству в данных конкретных условиях; ничто, кроме их успешного процветания здесь и сейчас, не движет их развитием ни в каком направлении». Далее Пинкер заключает: «Жизнь похожа на густой и ветвистый куст, а не на линейку или лестницу, и живые организмы располагаются на концах ветвей, а не у их основания».
В отношении человеческого мозга он задается вопросом, насколько «преимущества превышают затраты». К затратам он относит «большой объем мозга. Таз женщины едва вмещает в себя голову ребенка. Такое компромиссное строение является причиной гибели множества женщин в момент деторождения и объясняет раскачивающуюся походку женщин, из-за которой по биомеханическим причинам женщины перемещаются менее эффективно, чем мужчины. Кроме того, болтающаяся на шее тяжелая голова повышает вероятность смертельных повреждений при таких несчастных случаях, как падения». Он продолжает список недостатков, среди которых большой расход энергии мозгом, медленные реакции и медленное обучение.
В принципе, все эти утверждения точны (хотя многие знакомые мне женщины ходят гораздо легче, чем я), однако Пинкеру не хватает обобщений. Это верно, что биологическая эволюция не имеет специфического направления. Скорее она ищет пути среди «густых и ветвистых кустов» природы. Так же верно, что эволюционные изменения не обязательно происходят в направлении повышения интеллекта – они идут по всем направлениям. Можно привести множество примеров успешных организмов, которые практически не изменились за миллионы лет (скажем, аллигаторы появились 200 млн лет назад, а многие микроорганизмы – еще раньше). Однако в процессе последовательного развития мириад эволюционных ветвей одно из направлений действительно ведет к повышению интеллекта. И именно этот факт является предметом нашей дискуссии.
Схема расположения ключевых отделов мозга человека.
Новая кора некоторых млекопитающих
Предположим, у нас есть банка с синим газом. Когда мы открываем крышку, к молекулам газа не поступает никакого сигнала типа «эй, ребята, крышка открыта, путь свободен!» Молекулы просто продолжают делать то же, что обычно, то есть движутся во всех направлениях без какого-либо предпочтения. Но при этом те из них, которые находятся в верхней части банки, действительно выходят наружу, и со временем большинство молекул покинет банку. Однажды биологическая эволюция создала механизм иерархического обучения, и он оказался чрезвычайно полезным для реализации одной из ее задач – выживания видов. Преимущество обладания новой корой становится совершенно очевидным в тех ситуациях, когда быстро меняющиеся обстоятельства благоприятствуют быстрому обучению. Самые разные виды организмов – и растения, и животные – учатся адаптироваться к изменяющимся условиям, однако за неимением новой коры им приходится использовать процесс генетической эволюции. Для обучения новым стратегиям поведения (или другим адаптационным стратегиям в случае растений) организмам, не имеющим новой коры, требуются тысячи лет (множество поколений). Выдающимся преимуществом организмов с новой корой является возможность обучения на протяжении нескольких дней. Если вид попадает в ситуацию, характеризующуюся драматическими изменениями внешних условий и один из представителей вида изобретает, открывает или просто случайно обнаруживает (все эти три метода являются вариантами инноваций) путь адаптации к этим изменениям, другие представители вида замечают, усваивают и копируют этот метод, который в результате быстро, как вирус, распространяется во всей популяции. Мел-палеогеновое вымирание, произошедшее около 65 млн лет назад, стало причиной исчезновения многих видов организмов, которые не имели новой коры и не смогли достаточно быстро адаптироваться к резким изменениям окружающей среды. Это был поворотный момент в развитии млекопитающих, занявших освободившиеся экологические ниши. Так биологическая эволюция «обнаружила», что способность новой коры к иерархическому обучению настолько ценное приобретение, что данная область головного мозга продолжала увеличиваться и теперь составляет основную часть мозга Homo sapiens.
Открытия в нейробиологии подтвердили ключевую роль иерархических способностей новой коры, а также представили доказательства теории мысленного распознавания образов (ТРО). Эти доказательства складываются из множества наблюдений и анализов, часть которых я здесь представлю. Канадский психолог Дональд Хебб (1904–1985) первым предпринял попытку идентифицировать неврологические основы процесса обучения. В 1949 г. он описал механизм физиологического изменения нейронов в зависимости от пережитого опыта, что может быть основой обучаемости и пластичности головного мозга. Он писал: «Предположим, что сохранение или повторение реверберационной активности способствует длительным клеточным изменениям… Если аксон клетки А находится достаточно близко, чтобы возбуждать клетку В, и возбуждает ее непрерывно или многократно, происходит некий рост или определенные метаболические изменения в одной или в обеих клетках, в результате чего возрастает эффективность возбуждения клеткой A клетки B»[45]. Эта теория, выраженная в тезисе cells that fire together wire together («между клетками, которые возбуждаются одновременно, возникает прочная связь»), стала известна как «правило Хебба». Идея Хебба получила подтверждение, и теперь известно, что клетки мозга могут образовывать новые связи и усиливать их благодаря собственной активности. Теперь сканирование головного мозга позволяет наблюдать за развитием подобных связей. Строение искусственных сетей нейронов основано на теории Хебба об обучении нейронов.