Наш следующий вопрос таков: как будет выглядеть сферический вихрь? Давайте начнем с визуализации того, что происходит, когда жидкость вращается вокруг центральной оси. Как только жидкость начинает вращаться, она образует воронку вдоль центральной оси. Это можно продемонстрировать очень просто: наберите раковину воды и мешайте воду рукой по большой окружности. В центре круга сразу же образовывается воронка.
А сейчас нам нужно представить, что та же жидкость вращается внутри сферической области, в данном случае вне атома. Мы увидим, что вдоль оси вращения, между северным и южным полюсами сферы вновь будет образовываться воронка. Воронка формирует сквозное отверстие в центре сферы. На одном полюсе сферы вода будет втекать, и, приближаясь к центру, вихрь будет сужаться. Затем, действие кинетической энергии воды будет заставлять ее вытекать из противоположного полюса, причем, достигая внешнего края, вихрь будет постепенно расширяться. Вода должна втекать в одну сторону и вытекать из другой, ибо больше ей некуда идти. Таково основное свойство “тора”. Например, его можно видеть в закручивающемся внутрь движении колец дыма.
Естественно, изображение стоит тысячи слов. Рис. 2.3, заимствованный у Чарльза Кейгла, демонстрирует структуру сферического тора на квантовом уровне. Это структуру он называет “электромагнитотороидом”.
Продолжая исследование феномена вращения, мы обнаруживаем, что и другие исследователи приняли сферический тор для квантовой сферы. В этом отношении, самыми исчерпывающими и математически подкрепленными считаются теории д-ра Гарольда Аспдена. Они опубликованы в самых уважаемых научных журналах. Д-р Аспден тоже иллюстрирует концепцию, что атомы — это на самом деле сферические торы, хотя и не пользуется словом “тор”.
“Я вставляю комментарий: мое продвигающееся исследование этого предмета является свидетельством того, что эфир способен демонстрировать вращательный и угловой моменты потому, что сфера чего-то, обладающая массой плотности, может вращаться вокруг центральной оси и не нарушать окутывающий ее эфир. Это перспектива того, что, оставаясь открытыми, мы сохраняем веру в эфир и не позволяем своим умам быть узурпированными доктринами Эйнштейна”.
2.8 МОГУТ БЫТЬ ОБЪЯСНЕНЫ ОТДЕЛЬНЫЕ АНОМАЛИИНаша работа была бы относительно простой, если бы все, что нам следовало делать, — это считать, что сферические атомы с центральной осью формируются в виде вихрей в жидкообразном эфире. Однако в квантовых наблюдениях обнаруживаются отдельные геометрические аномалии, которые должны быть объяснены прежде, чем модель будет завершенной. Вот две основные, относящиеся к модели квантовые проблемы, которые мы представляем, чтобы быть точными:
Во-первых, следует описать, почему “электронные облака” формируются в атоме с пустыми пространствами между ними, что противоречит сферическим образованиям. Во-вторых, следует понять, как и почему эти энергетические образования сферического тора собираются в кристаллические структуры, такие как поваренная соль, образующая куб. Одно из интереснейших свойств такого кристалла — он естественно распадается на свои миниатюрные версии, причем между гранями кристалла сохраняется одно и тоже угловое отношение.
Оба вопроса можно решить, если начать понимать важность того, что мы знаем как Платоновы Твердые Тела — набор пяти разных геометрических форм, очень важных в секретной науке древних и освещенных в двух предыдущих книгах. Короче, в сферическом “вихре” вибрирующей (пульсирующей) жидкости будут естественно появляться геометрические формы “Платоновых Тел”. В следующей главе мы обретем понимание древней и современной важности Платоновых Тел и увидим удивительное и неожиданное физическое свидетельство для доказательства того, что эта теория верна. Затем, в главе 4, мы введем теоретические данные Рода Джонсона, которые полностью завершат нашу точку зрения на квантовую реальность.
Литература
1. Aspden, Harold. Energy Science Tutorial # 5. 1997.
2. Cagle, Charles. ElectromagnetotoroidModel. 1999.
3. Cameron, Jeff. TransdimensionalTechnologies. 2001.
4. Crane, Oliver et al. Central Oscillator and Space-Time Quanta Medium. Universal Expert Publishers, June 2000, English Edition.
5. Мишин, А. М. Уровни эфирной плотности.
6. Мишин, А. М. Модель эфира как результат новой эмпирической концепции. Международная Академия МегаНаук, Санкт-Петербург, Россия.
7. Wolff, Milo. Exploring the Physics of the Unknown Universe. Technotran Press, Manhattan Beach, CA, 1990.
Глава 3: Сакральная геометрия в квантовой реальности
3. 1 СЕКРЕТЫ АТЛАНТИДЫ (ПЕРЕСМОТР)Как рассказывалось в предыдущей книге, бо льшая часть космологической картины, которую мы описываем в этой книге, пришла из Ведических текстов, датирующихся 18.000-ми лет назад. Весьма похоже на то, что в древние времена вся обсуждаемая нами космология была хорошо известна Атлантам и жителям Империи Рама. Затем, приблизительно 12.000 лет назад, всемирный катаклизм разрушил обе эти цивилизации. С годами наследникам научного знания становилось все труднее и труднее видеть “большую картину”.
Почти все священные традиции, включая Веды, настаивали на существовании скрытого порядка, объединяющего все аспекты Вселенной. Также они утверждали, что при достаточном изучении и визуализации стоящих за скрытым порядком геометрических форм, ум Посвященного мог связываться с Единством Вселенной, обретал способность показывать фокусы сознания и демонстрировать преимущество сознания над материей. Визуализации одних людей принимали форму мандал, таких как Шри Янтра. Другие предпочитали танцевать, чтобы посредством движений и музыки настраиваться на эти геометрические формы. Третьим нравилось собирать, лепить и/или рисовать эти формы циркулем и линейкой, отсюда важность главного символа Массонского братства, на котором буква “G” символизировала “Геометрию” и “Великого Архитектора Вселенной”. Над буквой G располагался циркуль, а под ней — плотницкий угольник. Группы, существовавшие до Массонов, такие как Рыцари-Тамплиеры, выбирали зашифровывать геометрические отношения в своих священных структурах, таких как мозаичные окна в соборах.
3.2 САКРАЛЬНАЯ ГЕОМЕТРИЯ И ПЛАТОНОВЫ ТВЕРДЫЕ ТЕЛАКраеугольным камнем знания секретных школ мистерий, относящегося к скрытому порядку во Вселенной, всегда была сакральная геометрия. Мы достаточно писали на эту тему в двух предыдущих книгах, и для лучшего понимания просим читателя обратиться к этим двум книгам. Сакральная геометрия — это еще одна форма вибрации или “кристализованная” музыка. Рассмотрим следующий пример:
Сначала мы дергаем гитарную струну. Это создает “стоячие волны”, то есть волны, не движущиеся по струне назад и вперед, а остающиеся на одном месте. Мы увидим места, где присутствует сильное вертикальное движение, представляющее собой верх и низ волны, и другие места, где вертикального движения нет. Такие места называются узлами. Узлы, формирующиеся в любом виде стоячей волны, всегда будут расположены на одинаковом расстоянии друг от друга, а скорость вибрации будет определять количество появляющихся узлов. Это значит: чем выше вибрация, тем больше узлов.
В двух измерениях мы можем использовать осциллограф или подвергнуть вибрации плоскую круглую “пластину Хладни” и наблюдать появление узлов, формирующих простые геометрические формы, такие как квадрат, треугольник и шестиугольник. Такая работа повторялась много раз д-ром Гансом Дженни, Джеральдом Хокинсом и другими.
• Если окружность имеет три узла, расположенных на одинаковом расстоянии друг от друга, то при их соединении получится треугольник.
• Если окружность имеет четыре узла, то образуется квадрат.
• Если окружность имеет пять узлов, образуется пятиугольник.
• Шесть узлов образуют шестиугольник, и так далее.
Хотя в терминах волновой механики это очень простая концепция, Джеральд Хокинс первым математически доказал, что вписанные в окружности геометрии являются музыкальными отношениями. Мы, конечно, удивимся, узнав, что к этому открытию его привел анализ различных геометрических образований “кругов на полях”, которые появлялись буквально за одну ночь на полях английской сельской местности. Они описывались в обеих предыдущих книгах.
Самые глубинные и самые уважаемые формы священной геометрии трехмерны и известны как Платоновы Твердые Тела. Существуют только пять форм, удовлетворяющих всем необходимым правилам. Это восьмигранный октаэдр, четырехгранный тетраэдр, шестигранный куб, двенадцатигранный додекаэдр и двадцатигранный икосаэдр. На нижеприведенном рисунке тетраэдр изображен в виде “звездного тетраэдра” или сплетенного тетраэдра, что означает два тетраэдра, соединенных вместе в совершенной симметрии.