MyBooks.club
Все категории

Лоренс Гарднер - Чаша Грааля и потомки Иисуса Христа

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Лоренс Гарднер - Чаша Грааля и потомки Иисуса Христа. Жанр: История издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Чаша Грааля и потомки Иисуса Христа
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
342
Читать онлайн
Лоренс Гарднер - Чаша Грааля и потомки Иисуса Христа

Лоренс Гарднер - Чаша Грааля и потомки Иисуса Христа краткое содержание

Лоренс Гарднер - Чаша Грааля и потомки Иисуса Христа - описание и краткое содержание, автор Лоренс Гарднер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Правда ли, что Иисус Христос был женат и имел детей? Если так, то что стало с его семьей? Живы ли его потомки сейчас? Повествование этой интригующей книги начинается там, где все другие авторы его заканчивают. Опираясь на архивные данные, известный исследователь Лоренс Гарднер прослеживает генеалогическую линию Иисуса Христа на протяжении веков среди правящих королевских домов Европы. Он восстанавливает генеалогическое древо сыновей как Иисуса Христа, так и его брата, представляет новый взгляд на такие исторические фигуры, как Мария Магдалина, король Артур, правители династий Меровингов и Каролингов, и, наконец, объясняет, что такое Чаша Грааля.Книга «Чаша Грааля и потомки Иисуса Христа» — уникальное достижение в области генеалогического исследования. Автор книги Лоренс Гарднер, используя древние манускрипты и архивные документы по данное теме, выносит на суд читателя свою концепцию, выходящую за пределы общепринятых взглядов.

Чаша Грааля и потомки Иисуса Христа читать онлайн бесплатно

Чаша Грааля и потомки Иисуса Христа - читать книгу онлайн бесплатно, автор Лоренс Гарднер

Поскольку президенты и премьер-министры не обладают политической свободой, а политические партии поочередно сменяют друг друга у кормила власти, то неизбежно утрачивается и политическая преемственность, в которой так заинтересованы народы. И хотя такое явление само по себе не обязательно заслуживает порицания, плохо то, что в такой обстановке вечной смены руководства не существует надежного общественного института, способного стать поборником гражданских прав и свобод. Великобритании, по крайней мере, удалось сохранить монархию; но это ограниченное в политическом отношении самовластие и как таковое не может выполнять функцию полноценного защитника интересов нации. В отличие от британцев, у американцев есть своя писаная конституция. Несмотря на это, в США нет такой силы, которая смогла бы заставить соблюдать ее принципы бесконечно меняющиеся правительства, преследующие свои собственные политические цели.

Есть ли какой-нибудь выход из этого ненормального положения? Существует ли решение данной проблемы — решение, которое не просто вселит надежду на лучшее будущее, но укрепит уверенность в завтрашнем дне? Да, разумеется, оно есть, но зависит от тех государственных служащих, которые осознают себя скорее представителями общества, нежели намереваются стать во главе его. Также и политическую администрацию, назначенного защитника конституционных прав, следовало бы наделить полномочиями пресекать любые возможные нарушения основного закона. Добиться данного результата можно было бы так, как это в свое время намечали сделать Джордж Вашингтон и отцы американской нации. Их первоначальный замысел заключался в том, что в стране наряду с демократическим парламентом должна была существовать и конституционная монархия. В этом случае суверен связывался бы обязательствами не перед собранием народных представителей или церковью, но перед народом и его конституцией. При таких условиях верховная власть полностью переходила бы в руки народа, а монарх, как подлинный страж государства, приносил бы присягу на верность нации. А это выгодно отличало бы Соединенные Штаты от Великобритании, где до сих пор народ принимает верноподданнические обязательства перед парламентом и монархией.

Так и не реализованный замысел отцов американской нации состоял в том, чтобы министры избирались народом на основе мажоритарной системы, но их деятельность при этом ограничивалась рамками конституции. Поскольку конституция принадлежит народу, то ее гарантом — как это понимал Джордж Вашингтон — следовало бы стать монарху, который связан обязательством не перед политиками или церковью, но перед суверенной нацией. Благодаря естественной системе наследования (когда люди с рождения готовятся к выполнению поставленной задачи), такие гаранты конституционных прав обеспечили бы неразрывную преемственность политики сменяющихся правительств. В этом отношении как монархи, так и министры являлись бы облеченными доверием общества служителями конституции. Идея высоконравственного правления, заложенная в самой сути «Кодекса Грааля», не выходит за пределы возможностей любого цивилизованного национального государства.

Один из ведущих британских политиков заявил недавно, что пользоваться популярностью не входит в его обязанности! Это не так, ибо популярный министр — человек, на которого можно положиться. Пользуясь заслуженным доверием электората, он способствует процессу демократизации. Ни один министр не способен правдиво изложить идею социального равенства, если априорно полагает, будто наделен какими-то качествами, возвышающими его над обществом. Классовая структура всегда навязывается сверху, а не снизу. Поэтому в интересах гармонии и единства тех, кто слишком возомнил о себе, необходимо сбросить с сооруженного ими пьедестала. Иисус Христос ни в коей мере не чувствовал себя униженным, когда омывал ноги апостолам. Наоборот, он, как истинный государь Грааля, вознесся над царством равенства и монаршего служения. Это и есть извечная заповедь Сангреаля, выраженная в учении о Граале предельно ясно. Чтобы зарубцевалась рана царя ловцов и вновь зацвела опустошенная земля, стоит только спросить: «Кому служит Грааль?»

ПРИЛОЖЕНИЕ I

Три стола Грааля

Предание гласит о том, что «Грааль покоился на трех столах: круглом, квадратном и прямоугольном. Все они имели один и тот же периметр, а число три составляло два к одному». Такое туманное описание столов способствовало укоренению мысленного представления о Граале как о предмете подобном кубку или блюду. По этой причине данные предметы мебели уподоблялись столам короля Артура, замка Грааля и Тайной вечери. В действительности же указанное выше соотношение «два к одному» характеризует знаменитую золотую пропорцию и практически не имеет отношения к столам в утилитарном смысле.

Золотая пропорция, представляющая собой гармоническое деление отрезка, использовалась древнегреческим математиком Евклидом в I столетии до Р.Х. На самом же деле применение на практике этого метода началось задолго до Евклида и восходит ко времени Платона. Золотое сечение использовалось в античное время в пропорциях архитектурных сооружений, а в наши дни широко применяется в изобразительном искусстве, при конструировании и дизайне. Приблизительно это отношение равно 5/3, точнее 8/5, 13/8 и т.д.

В основу метода положено разделение линий на отрезки, пропорциональные квадратным корням, которое не требует линейных измерений и осуществляется лишь посредством циркуля. За основу берется квадрат со стороной, равной √1. Раствором циркуля, равным длине его диагонали, отсекаем на продолжении основания отрезок, соответствующий √2. Восстанавливаем из данной точки перпендикуляр, равный √1, и раствором циркуля, равным гипотенузе получившегося треугольника, отмечаем на основании отрезок, соответствующий √3. Продолжая построение далее, получим отрезок, равный √5, являющийся гипотенузой прямоугольного треугольника с соотношением сторон 2:1, представляющим собой вышеозначенную пропорцию Грааля.

Хотя сами отрезки несоизмеримы со стороной единичного квадрата, площади образованных ими квадратов выражаются рациональными числами. В свое время древнегреческие мыслители заключили, что арифметика не может служить основанием для геометрии. Геометрические величины, решили они, имеют более общую природу, чем числа и их отношения. По этой причине в основу всех расчетов была положена геометрия — соотношения длин заменялись соотношениями площадей. Всем известная теорема Пифагора понятна лишь применительно к площадям. Например, площадь квадрата со стороной √1 составляет ровно одну пятую площади квадрата, построенного на длинной стороне прямоугольника, равной √5. Таким образом, соотношение между подкоренными значениями длин сторон, показанных на рисунке прямоугольников, можно использовать для выражения площадей образуемых ими квадратов.

Диагональ прямоугольника с соотношением сторон 1:2 (т.н. сдвоенного квадрата, равная √5), непосредственно связана с золотой пропорцией, широко применявшейся при строительстве храмов и святилищ. Золотая пропорция показывает, что точка делит отрезок так, что большая часть относится к меньшей так же, как весь отрезок к большей части. Искомое отношение отрезков выражается числом φ = (√5 + 1)/2 = 1,618034… Такое обозначение принято в честь древнегреческого скульптора Фидия, жившего в V веке до Р.Х. и руководившего постройкой храма Парфенон в Афинах. В пропорциях этого храма многократно присутствует число φ.

Число Фидия обладает особыми математическими свойствами. В любой монотонно возрастающей геометрической прогрессии, где φ является ее знаменателем, каждый последующий член равен сумме двух предыдущих. Это уникальное свойство позволяет путем несложных вычислений произвести всю последовательность.

Имея два первых члена ряда, можно с помощью циркуля и линейки легко достроить все остальное. Числовой вид данной последовательности придал итальянский математик XIII века Леонардо Фибоначчи. С тех пор эта последовательность, в которой каждый последующий член равен сумме двух предыдущих, получила название чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Данный числовой ряд имеет не только значение для решения математических задач, — по его законам происходит развитие животного и растительного мира.

С числом Фидия (φ) связана другая замечательная математическая константа — число Пифагора (π), выражающее отношение длины окружности к ее диаметру. Они связаны между собой соотношением: φ2 = 10/12π. Отсюда, зная периметры квадратного и прямоугольного столов, можно легко рассчитать размеры круглого стола.


Лоренс Гарднер читать все книги автора по порядку

Лоренс Гарднер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Чаша Грааля и потомки Иисуса Христа отзывы

Отзывы читателей о книге Чаша Грааля и потомки Иисуса Христа, автор: Лоренс Гарднер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.