MyBooks.club
Все категории

Александр Марков - Эволюция. Классические идеи в свете новых открытий

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Марков - Эволюция. Классические идеи в свете новых открытий. Жанр: Биология издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Эволюция. Классические идеи в свете новых открытий
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
226
Читать онлайн
Александр Марков - Эволюция. Классические идеи в свете новых открытий

Александр Марков - Эволюция. Классические идеи в свете новых открытий краткое содержание

Александр Марков - Эволюция. Классические идеи в свете новых открытий - описание и краткое содержание, автор Александр Марков, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Что такое польза? Как случайная мутация превращает аутсайдеров в процветающих победителей? Что важнее для эволюции — война или сотрудничество?Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.

Эволюция. Классические идеи в свете новых открытий читать онлайн бесплатно

Эволюция. Классические идеи в свете новых открытий - читать книгу онлайн бесплатно, автор Александр Марков

У актинии экспрессия miR-100 обнаружилась в отдельных клетках вдоль края личиночного рта (бластопора), примерно в той области, которая по сравнительно-анатомическим данным соответствует передней кишке или глотке билатерий (предполагается, что у предков билатерий был щелевидный рот, как у некоторых кишечнополостных, который потом склеился посередине, оставив два отверстия по краям: они потом стали ртом и анусом).

У личинок червя Capitella и морского ежа эти микроРНК тоже локализуются вокруг глотки. По-видимому, такая их локализация первична для билатерий, но у продвинутых животных, таких как членистоногие и хордовые, эти микроРНК расширили сферу своей деятельности и стали работать не только в передней кишке и связанных с ней нейросекреторных клетках, но и в других частях зародыша.

Личинки кольчатых червей, иглокожих и многих других билатерий плавают при помощи ресничных шнуров — полосок эпителиальных клеток, покрытых согласованно бьющимися ресничками. Три микроРНК (miR-29, miR-34, miR-92) у обоих исследованных червей и морского ежа оказались приуроченными к ресничным шнурам. У позвоночных эти микроРНК экспрессируются в нейронах, выстилающих желудочки мозга, причем некоторые из этих нейронов несут реснички.

Этот факт должен привести в восторг сравнительных анатомов и эмбриологов, которые давно говорили о тесной связи между ресничными шнурами и нервными стволами и о том, что нервная пластинка (из которой формируется спинная нервная трубка — зачаток центральной нервной системы хордовых) гомологична невротроху — ресничному шнуру, образующемуся у личинок билатерий на месте замкнувшегося щелевидного бластопора. Иными словами, клетки с ресничками, выстилающие желудочки мозга позвоночных, исторически восходят к невротроху. Поэтому то, что в них экспрессируются те же микроРНК, что и в невротрохе, показывает, что сравнительные анатомы XIX–XX веков не даром ели свой хлеб.

Два набора микроРНК оказались приуроченными к двум разным областям мозга. Один набор присутствует в нейросекреторной ткани верхней (дорзальной, спинной) части мозга. Те же самые микроРНК ранее были обнаружены в нейросекреторных клетках гипоталамуса у рыб. То, что гипоталамус находится в нижней (брюшной) части мозга, это правильно, потому что брюшная сторона хордовых гомологична спинной стороне других билатерий (Малахов, 1996). Второй набор «мозговых» микроРНК у червей экспрессируется у оснований антенн — органов химического чувства. У мышей те же микроРНК приурочены к переднему мозгу, изначальной функцией которого у позвоночных была обработка обонятельной информации. Таким образом, здесь тоже наблюдается эволюционная преемственность.

Остальные микроРНК тоже оказались распределены закономерным образом по разным типам формирующихся тканей, причем были выявлены многочисленные параллели между их распределением у разных билатерий. Например, miR-124 приурочена к центральной нервной системе у насекомых и плоских червей, а у позвоночных — к нервным клеткам вообще. У платинереиса эта микроРНК экспрессируется только в центральной нервной системе — мозге и брюшной нервной цепочке. Другие микроРНК, у позвоночных экспрессирующиеся в некоторых органах чувств, у платинереиса тоже оказались приуроченными к органам чувств (глазам, антеннам, чувствительным придаткам параподий). МикроРНК miR-1 и miR-133 у кольчатых червей, как и у позвоночных, присутствуют только в развивающихся мышцах, и т. д.

Полученные результаты показывают, что одновременное появление у ранних билатерий новых тканей и новых микроРНК не было случайным совпадением. По-видимому, микроРНК изначально играли важную роль в дифференцировке тканей у билатерий. Их функции, однако, оказались более пластичными, чем у Hox-генов, и поэтому у высших билатерий «сфера влияния» многих микроРНК стала сильно отличаться от исходной.

Hox-гены обрели свободу — и змеи потеряли ноги

Напоследок рассмотрим исследование, проливающее свет на роль Hox-генов в эволюции позвоночных. Как известно, важнейшая функция Hox-генов состоит в том, что они подробно размечают эмбрион вдоль передне-задней оси. Дальнейшая судьба эмбриональных клеток, оказавшихся в той или иной части эмбриона, зависит от набора Hox-генов, экспрессирующихся в этой части. Для каждого Hox-гена характерна своя область экспрессии. Например, гены Hox12 и Hox13, как правило, работают только в задней части эмбриона, которая в дальнейшем станет хвостом; гены Hox10 у некоторых позвоночных работают от заднего конца эмбриона до той черты, которая станет границей между грудным отделом (где на позвонках есть ребра) и поясничным, где ребра не развиваются. «Hox-код», определяющий план строения организма, сложен и не совсем одинаков у разных групп позвоночных. Вряд ли можно сомневаться в том, что многие крупные эволюционные преобразования, затрагивающие план строения, были связаны с изменениями в структуре и экспрессии Hox-генов. Однако хорошо изученных примеров, иллюстрирующих эту связь, пока немного[96].

Hox-гены дрозофилы и человека. Прямоугольниками обозначены гены в том порядке, в каком они расположены в хромосомах. У мухи один набор Hox-генов, у человека — четыре, частично дублирующие друг друга (они образовались из одного в результате двух полногеномных дупликаций). Кластеры A, B, C, D находятся на разных хромососмах (у мыши это хромосомы № 6, 11, 15 и 2, у человека — № у, 17, 2, 12). У змей, в отличие от мыши и человека, в кластере D отсутствует 12-й ген (Hoxd12). На изображениях мухи и зародыша человека области экспрессии соответствующих генов окрашены теми же цветами, что и сами гены. По последним данным, соответствие между Hox-генами членистоногих и позвоночных несколько менее однозначно, чем показано на этой схеме.

У многих животных, в том числе у позвоночных, Hox-гены в геноме располагаются кластерами, т. е. группами вплотную друг другу. Самое удивительное, что порядок расположения генов в Hox-кластерах часто (хотя и не всегда) совпадает с распределением областей экспрессии вдоль передне-задней оси: впереди находятся «головные» гены, за ними следуют гены, отвечающие за формирование средних участков тела, а замыкают кластер «задние» гены, управляющие развитием задних частей туловища. По-видимому, это связано со способом регуляции экспрессии Hox-генов: участок ДНК, где находится Hox-кластер, постепенно «раскрывается», становясь доступным для транскрипции по мере движения от переднего конца тела к заднему. Поэтому у переднего конца тела экспрессируются только передние Hox-гены, а чем ближе к хвосту, тем более задние гены включаются в работу. Удобный способ регуляции генов, отвечающих за разметку эмбриона вдоль передне-задней оси!

У предков позвоночных, как у современного ланцетника, в геноме был один Hox-кластер, включающий 14 генов. На ранних этапах эволюции позвоночных произошло две полногеномные дупликации. В результате позвоночные приобрели четыре Hox-кластера вместо одного. Это открыло перед позвоночными большие эволюционные возможности (см. главу 5). Отдельные Hox-гены в некоторых кластерах были утрачены, но в целом их набор и порядок расположения остался сходным во всех четырех кластерах. Паралогичные гены (т. е. копии одного и того же Hox-гена в разных Hox-кластерах) приобрели немного различающиеся функции, что дало возможность тонко регулировать эмбриональное развитие и облегчило развитие новых планов строения.

Биологи из Швейцарии, Новой Зеландии и США изучили работу Hox-генов у чешуйчатых рептилий (отряд Squamata) (Di-Poi et al., 2010). Этот отряд, объединяющий ящериц и змей, интересен разнообразием планов строения и вариабельностью признаков, связанных с передне-задней дифференцировкой туловища (относительная длина отделов тела, число позвонков в них и т. п.) Поэтому логично было предположить, что Hox-кластеры чешуйчатых должны обладать специфическими особенностями и что Hox-гены ящериц и змей должны различаться.

Ранее было показано, что области экспрессии передних Hox-генов у змей расширились в заднем направлении по сравнению с другими позвоночными. Это хорошо согласуется с общим удлинением тела. Кроме того, было установлено, что правило колинеарности (т. е. одинаковый порядок расположения генов в кластере и областей их экспрессии в эмбрионе) у змей строго соблюдается.

Исследователи сосредоточились на задних Hox-генах (от 10-го до 13-го). Главными объектами исследования были хлыстохвостая ящерица Aspidoscelis uniparens и маисовый полоз Elaphe guttata. Кроме того, были отсеквенированы Hox-кластеры нескольких других ящериц, гаттерии и черепахи. Для сравнения использовались Hox-кластеры курицы, человека, мыши и лягушки.


Александр Марков читать все книги автора по порядку

Александр Марков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Эволюция. Классические идеи в свете новых открытий отзывы

Отзывы читателей о книге Эволюция. Классические идеи в свете новых открытий, автор: Александр Марков. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.