Первый шаг на пути к открытию сонара летучей мыши был сделан в 1793 году итальянским ученым Ладзаро Спалланцани. Спалланцани поймал на колокольне нескольких летучих мышей, ослепил их и выпустил на некотором расстоянии от места поимки. Ослепленные летучие мыши вернулись на колокольню и даже ловили по дороге насекомых. Примерно к тому же времени относятся опыты одного швейцарского натуралиста, который, закупорив уши нескольким летучим мышам, обнаружил, что животные потеряли способность ориентироваться, стали совершенно беспомощны и натыкались на все вокруг. Стало ясно, что летучим мышам нужны уши, а не глаза, чтобы ориентироваться и ловить насекомых. Спалланцани мог только предполагать, что эти животные способны как-то «видеть» с помощью ушей; однако вплоть до 1920 года никому и в голову не приходило, что летучие мыши используют ультразвуки, т. е. звуки очень высокой частоты, которые человек не слышит. Лишь в 1938 году Дональд Гриффин провел в Гарвардском университете большую серию экспериментов, показавших, каким образом летучие мыши с помощью ультразвуковой эхолокации избегают столкновения с препятствиями. Еще позднее ученые выяснили, как мыши преследуют и ловят насекомых.
Ультразвуковые «крики» летучих мышей впервые удалось услышать в лаборатории профессора Пирса, изобретателя прибора для преобразования высокочастотных звуков в колебания более низкой частоты, доступные человеческому уху. Гриффин принес в лабораторию клетку с мышами, и когда на нее направили этот «детектор летучих мышей», из громкоговорителя послышалась какофония трескучих оглушительных звуков. Вскоре после этого Гриффин совместно с Галамбосом поставил фундаментальные эксперименты, которые показали, насколько чувствителен сонар летучей мыши. В комнате, куда выпускали летучих мышей, была устроена преграда из туго натянутых проволок; расстояние между проволоками не превышало тридцати сантиметров; исследователи подсчитывали, сколько раз каждая летучая мышь задевала за проволоку, пролетая сквозь такую перегородку. Способность избегать столкновения с проволокой у различных летучих мышей оказалась неодинаковой. Ни одна из летучих мышей не достигла совершенства, но некоторые были чрезвычайно искусны. При толщине проволочек 1 мм летучие мыши касались их только два раза из десяти. Когда натягивали более тонкие проволочки, число удачных пролетов уменьшалось, но даже при использовании проволочек толщиной 0,3 мм летучие мыши все еще гораздо чаще огибали их, чем сталкивались с ними. Только тогда, когда взяли проволочки толщиной 0,07 мм (примерная толщина человеческого волоса), летучие мыши оказались совершенно не в состоянии их обнаруживать. Чтобы услышать эхо-сигналы от тонких проволочек, применявшихся в описанных выше опытах, требуется изумительная острота слуха. В другом опыте летучая мышь обнаруживала проволочки даже тогда, когда из двух репродукторов на нее с обеих сторон обрушивался ультразвуковой шум. Только при уменьшении диаметра проволочек до 0,5 мм летучие мыши теряли способность их обнаруживать. Хотя репродукторы наполняли комнату столь же громкими звуками, как и крики летучих мышей, животные все же слышали возвращавшиеся от проволочек эхо-сигналы, в 2000 раз более слабые. Это почти то же самое, что расслышать чей-то шепот сквозь рев толпы футбольных болельщиков.
В течение тридцати лет, последовавших за этими первыми экспериментами, Гриффин сумел объяснить многие физиологические механизмы, с помощью которых летучие мыши избегают столкновения с тонкой проволокой и ловят насекомых. В этой области исследования он не был одинок, и теперь мы располагаем огромным количеством данных о механизме эхолокации, полученных в стенах лабораторий. Вооруженные такой информацией и разработанной в последнее время сложной портативной аппаратурой, биологи могут теперь изучать летучих мышей в естественных условиях, чтобы выяснить, как эти животные используют механизмы эхолокации в своей повседневной жизни. Прежде всего необходимо исследовать, как летучие мыши издают и слышат звуки, т. е. как протекают наиболее важные физиологические процессы, используемые при эхолокации.
Самые распространенные летучие мыши Европы и большинство североамериканских видов принадлежат к семейству гладконосых. К этому семейству относятся, в частности, нетопыри (в Англии их называют pipistrelle, а в Германии — die Fledermaus), которых многим случалось видеть в сумерках. Два вида летучих мышей — большой и малый бурые кожаны, которых Гриффин использовал в своих экспериментах, — также принадлежат к семейству гладконосых. На фотографиях гладконосых летучих мышей видно, что они летают с открытым ртом; отсюда естественно вытекает вывод, что они издают ультразвуковые импульсы с помощью рта. Это подтверждается грубым, но наглядным экспериментом. Если рот летучей мыши погрузить в воду, то нельзя обнаружить никаких ультразвуковых сигналов, но если в воду погрузить летучую мышь целиком, оставив над водой только ее рот, то можно зарегистрировать много ультразвуковых сигналов, а также писк, которым она выражает свой протест. Ультразвук производится с помощью очень широкой гортани, или голосовой камеры; однако остается неизвестным, каким образом создается непрерывная серия чрезвычайно коротких сигналов-писков.
Гладконосых летучих мышей принято считать «типичными» летучими мышами, своего рода эталоном, однако отнюдь не все летучие мыши используют сонар; не пользуются им, например, тропические плодоядные летучие мыши. Не все летучие мыши издают ультразвуки ртом; так, подковоносые летают с закрытым ртом, посылая ультразвуковые сигналы при помощи ноздрей. В Суссексе над мусорной свалкой я наблюдал главным образом больших подковоносов, среди которых было несколько малых. Для этих двух видов, наиболее распространенных в Европе, характерен своеобразный мясистый вырост вокруг ноздрей, по форме очень напоминающий подкову. Морды летучих мышей, относящихся к другим семействам, «украшены» еще более причудливыми и неописуемо уродливыми образованиями.
Эти образования играют важную роль в распространении ультразвука. Во время полета подковоноса они находятся в постоянном движении, изгибаясь из стороны в сторону, и действуют как отражатели, концентрирующие ультразвуковые сигналы в узкий пучок (фиг. 13, Б и 14, Б). Этот пучок, расходящийся под углом 20°, колеблется из стороны в сторону, «прочесывая» пространство на пути летучей мыши. Ультразвуковые сигналы гладконосых летучих мышей в отличие от сигналов подковоносов представляют собой импульсы, распространяющиеся во всех направлениях (фиг. 13, А и 14, А), хотя наибольшая интенсивность этих импульсов регистрируется непосредственно впереди летучей мыши.
Фиг. 13.
А. Короткие, широко расходящиеся ультразвуковые импульсы гладконосой летучей мыши. Б. Длинный лучеобразный ультразвуковой импульс подковоносой летучей мыши, который «колеблется» из стороны в сторону.
Сигналы, издаваемые гладконосыми и подковоносыми летучими мышами, принципиально отличаются друг от друга. Импульсы гладконосых являются частотномодулированными: в каждом импульсе частота быстро меняется от высокой к низкой. Подковоносы, напротив, испускают импульсы почти постоянной частоты. Длительность каждого импульса сравнительно велика, примерно 100 мс (тысячных долей секунды). Иногда эти звуки имеют достаточно низкую частоту, и тогда их можно слышать как слабое тиканье, похожее на тиканье наручных часов.
Фиг. 14.
А. Ультразвуковой импульс гладконосой летучей мыши изменяется по частоте, что выражается в различной плотности вертикальных линий, и по громкости. Б. Частота и громкость сигнала в ультразвуковом импульсе подковоносов летучей мыши остаются постоянными.
Эхо от сигналов, посылаемых летучими мышами, чрезвычайно слабое: иногда оно в 2000 раз слабее первоначального сигнала. Таким образом, уши летучей мыши должны решать две проблемы; зарегистрировать очень слабое эхо, которое намного слабее любых звуков, воспринимаемых ухом человека, и уберечься от оглушения импульсом, издаваемым всего на несколько тысячных долей секунды раньше, чем возвращается его эхо. Ушные раковины летучих мышей часто непропорционально велики. У некоторых видов, например ушанов, уши достигают в длину 4 см, что составляет почти половину общей длины их головы и туловища. Непосредственно перед слуховым проходом обычно имеется хорошо выраженный козелок (tragus). Одно время предполагали, что козелок повышает остроту слуха летучей мыши, направляя, подобно ушной раковине, звуковые волны в ухо; однако проведенные эксперименты не подтвердили это предположение: когда козелок загибали, то чувствительность сонара летучей мыши не изменялась, если же загибали ушную раковину, летучая мышь становилась совершенно беспомощной.