Особо отметим, что весь процесс транскрипции идет в присутствии специальных ферментов: синтетаз, репликаз, полимераз. Матричной эту РНК называют потому, что на ней, как на матрице, синтезируется белок, а информационной потому, что она несет информацию об аминокислотной последовательности синтезируемого белка.
Следующий этап — перенос мРНК на рибосомы — клеточные органеллы в цитоплазме клетки, именно здесь непосредственно синтезируются белки. Этот последний этап образования белка называется трансляцией.
В начале процесса трансляции при помощи специальных ферментов-синтетаз аминокислоты переводятся в высокореакционную форму, происходит так называемое активирование. После этого опять-таки при участии ферментов каждая активированная аминокислота соединяется с молекулой специфической для нее транспортной рибонуклеиновой кислоты (тРНК). Молекула транспортной РНК значительно меньше молекулы информационной РНК — Молекулярный вес мРНК около 106, в то время как молекулярный вес транспортных РНК всего 104.
В клетке существует более 20 типов транспортных РНК, то есть несколько типов могут соответствовать одной и той же аминокислоте. В одном из участков цепи тРНК расположен антикодон, то есть группа из трех оснований, узнающая кодон (соответствующие три основания) на мРНК. Во время синтеза белка рибосома, кодон мРНК и антикодон тРНК, нагруженный аминокислотой, объединяются. Рядом с этим комплексом на мРНК располагается другой комплекс тРНК-аминокислота, и происходит реакция поликонденсации, объединения двух аминокислот в дипептид при участии ферментов. Эти две аминокислоты остаются связанными через карбоксильную группу со второй молекулой тРНК, первая молекула тРНК покидает рибосому, а сама рибосома сдвигается на один шаг по молекуле мРНК. После этого с комплексом дипептид — тРНК объединяется следующая тРНК с аминокислотой, образуется трипептид и так далее.
Сейчас мы посмотрели на «крупномасштабную» картину матричного синтеза белка, на эту идеально отлаженную машину мира живой материи. Вроде бы все не очень сложно. В двойной спирали есть ген. Этот ген переписывается на молекулу РНК, а далее на ней строится белок.
Все по школьным учебникам идет именно так. Ну а если вглядеться в эту картину более пристально?
Итак, первая ступень кодирования — транскрипция.
Что нужно клетке, чтобы выполнить задачу образования «оттиска» гена — мРНК? Совсем немного. Для начала расплести двойную спираль ДНК, затем подтащить к одной из расплетенных нитей необходимые нуклеиновые основания и сделать оттиск, реплику с гена. Все, молекула мРНК готова отправиться из ядра клетки к рибосомам, Но подождите. Ведь и для расплетания спирали ДНК И для синтеза РНК нужны ферменты. Конечно, нужны.
«Как же так, — спросит читатель, — структура этих ферментов тоже определяется каким-нибудь геном?»
Разумеется, последовательность аминокислот любого клеточного белка записана в ДНК. На этом правиле зиждется вся современная молекулярная биология.
Итак, чтобы «запустить» процесс транскрипции, клетке нужны определенные белки: репликазы и синтетазы.
Но ведь эти белки клетка должна сначала построить сама. Она их не может получить непосредственно из пищи.
Следовательно, для образования синтетазы клетке нужна та же самая синтетаза.
Какой-то начальный запас синтетаз клетка передаст потомству при своем делении, а дальше уже потомок будет работать сам. У него есть родительские синтетазы и репликазы, а он сможет «запустить» свой матричный синтез. По мере развития потомки «наработают» некий резерв синтетаз и передадут его своим потомкам. Ну как, решает такая схема задачу, откуда берутся репликазы и синтетазы?
Нет, конечно, и вот почему. Эта схема — «вечный двигатель». В ней есть «вечные» инструкции, «вечные» гены синтетаз и репликаз, передающиеся в течение миллиардов лет из поколения в поколение. А мы ведь хотим разобраться в происхождении жизни, то есть в процессе, эволюционном, меняющемся во времени.
Итак, первый вопрос: как возникли гены?
Но вернемся к процессу трансляции. И здесь ключевую роль играют специальные ферменты, способные «выбирать» из смеси определенную аминокислоту для присоединения к соответствующей тРНК — Но ведь структура этого фермента, в свою очередь, определяется (как структура любого белка) последовательностью оснований на некотором участке ДНК? Да, мы опять встретились с той же ситуацией вечного двигателя.
На заключительной стадии синтеза белка на сцене появляются рибосомы и тРНК, структура которых, в свою очередь, определяется некоторым участком ДНК.
Мы видим в этой схеме неразрешимый в эволюционном плане парадокс. Его можно назвать парадоксом курицы и яйца (что было раньше, курица или яйцо) на молекулярном уровне.
Действительно, для синтеза какого-либо белка необходимо несколько специальных ферментов. Но для синтеза любого фермента нужен другой такой же фермент и так далее. Приходится признать, что эта схема не может удовлетворительно объяснить возникновение процесса матричного синтеза, так как получается замкнутый круг, и мы снова и снова приходим к вопросу о том, как возникли гены.
Но только ли этот вопрос встает перед нами? Отнюдь нет. Давайте еще раз присмотримся к различным этапам работы молекулярных машин.
Итак, матричная РНК синтезируется на одной из цепей дезоксирибонуклеиновой кислоты, отправляется к рибосомам и соединяется с ними. Как это происходит?
Каким образом матричная РНК попадает на рибосомы?
Здесь, по всей видимости, имеет место некоторая специфичность механизмов связывания мРНК с рибосомами, взаимного химического узнавания. Ну а транспорт тРНК к рибосомам идет главным образом за счет беспорядочных, случайных движений, диффузии молекулы в клетке. На примере тРНК биофизики показали, что механизм диффузии в состоянии объяснить наблюдаемые скорости синтеза.
Нужно сказать, что современное представление о роли тРНК выработалось не сразу и первоначально основная роль отводилась мРНК как непосредственной матрице для синтеза. Казалось, что пространственные химические связи, или, как говорят химики, стереохимическое соответствие между кодоном и аминокислотой, решают вопрос об аминокислотной последовательности белка.
Адапторная гипотеза Крика явилась первым этапом на пути к выяснению истинной роли тРНК в процессе матричного синтеза. Крик предположил, что аминокислота взаимодействует с матричной РНК не непосредственно, а при помощи некоторых малых молекул, которые он предложил называть адаптерами. Он считал, что адаптеры представляют собой тринуклеотиды, с которыми аминокислота соединяется при помощи ферментативного механизма. (Трудно переоценить роль Ф. Крика в развитии современной молекулярной биологии. Порой кажется, что большая часть принципиальных идей в этой науке была выдвинута именно им.)
Сейчас ясно, что адаптеры — это не что иное, как транспортные РНК, которые переносят активированные аминокислоты на рибонуклеиновую матрицу и рибосому.
Адаптером транспортная РНК названа потому, что она обеспечивает возможность специфического взаимодействия между аминокислотой и матричной РНК.
Основным свойством, определяющим дальнейший механизм сборки аминокислот, является специфическое взаимодействие транспортной и матричной РНК. Аминокислота, связанная с транспортной РНК, уже никак не влияет на дальнейший механизм синтеза. Все последующие процессы определяются только взаимодействием антикодона транспортной РНК, кодона информационной РНК и рибосомы.
Для проверки этого положения были проведены эксперименты, в процессе которых удалось включить в белок неприродную аминокислоту, соединив ее ферментативно с транспортной РНК. Связывание антикодона с кодоном — неферментативный процесс. Он определяется тем же правилом спаривания оснований, правилом Чаргаффа, о котором мы уже говорили. Именно после соединения антикодона с кодоном и начинается последовательная сборка полипептидной цепочки.
Кстати, стоит сказать еще несколько слов о правиле Чаргаффа и о самом Чаргаффе. Биохимик из Колумбийского университета, австриец по происхождению Э. Чаргафф и его ученики еще со времен второй мировой войны изучали соотношение различных нуклеиновых оснований в разных препаратах ДНК. Установив количественно свое знаменитое правило, Чаргафф не дал ему никакого объяснения, хотя, имея в руках подобный материал, именно он, а не Уотсон с Криком, находился ближе всего к — открытию структуры двойной спирали.
Более того, как пишет Уотсон, Чаргафф с нескрываемым презрением относился к их попыткам раскрыть структуру ДНК. И когда наконец весь мир признал великое открытие Уотсона и Крика, лишь один Чаргафф продолжал относиться к нему весьма скептически.