Раздвигаем границы ИИ. Повышение компетентности
1. Длинная утомительная речь, как пенистое украшение пирога[102].
2. Предмет детской одежды, возможно, во время путешествия на корабле.
3. Виновный в поедании воинов короля Хротгара на протяжении двенадцати лет; дело поручено воину Беовульфу[103].
4. Процесс постепенного развития в мозге или в организме при беременности[104].
5. Национальный День учителя и день дерби в Кентукки.
6. Он, по выражению Вордсворта, парит, но не улетает[105].
7. Слово из четырех букв, обозначающее железную накладку на копыте лошади и коробку для карт в казино.
8. В третьем акте оперы Верди, написанной в 1846 г., этот бич божий смертельно ранен своей любовницей Одабеллой.
Примеры из викторины «Джеопарди!», на все вопросы которой Ватсон дал правильные ответы: разглагольствование, фартук, Грендель, гестация, май, жаворонок, shoe (башмак, подкова). В ответ на 8-й вопрос Ватсон ответил: «Это Аттила?» Его попросили уточнить, тогда он сказал: «Это Аттила, гунн?» — что сочли правильным ответом.
Техника, которую компьютер применяет для ответов на вопросы «Джеопарди!», очень напоминает мою собственную. Машина начинает поиск от ключевого слова в вопросе, а затем прочесывает свою память (в случае Ватсона это 15-терабайтный банк человеческих знаний) для выявления кластеров ассоциаций с этим словом. Она тщательно проверяет наилучшие совпадения с полным контекстом вопроса: категория и тип ответа, зашифрованные в вопросе время, место и пол и т. д. И когда машина чувствует себя достаточно «уверенной», она подает сигнал. Для игрока в «Джеопарди!» это мгновенный и интуитивный процесс, но я уверен, что в моей голове происходит что-то очень похожее.
Кен Дженнингс, чемпион викторины «Джеопарди!», проигравший Ватсону
Я приветствую наших новых компьютерных повелителей.
Кен Дженнингс, перефразируя Симпсонов, после поражения Ватсону
Бог мой, [Ватсон] умнее отвечает на вопросы «Джеопарди!», чем средний игрок. Он поразительно умен.
Себастьян Трун, бывший директор лаборатории в Стэнфорде
Ватсон ничего не понимает. Это огромный паровой каток.
Ноам Хомский
Искусственный интеллект повсюду вокруг нас. Простое общение с кем-то по электронной почте или мобильному телефону основано на передаче информации с помощью разумных алгоритмов. Практически любой продукт, который мы сегодня используем, спроектирован при сотрудничестве человека и искусственного интеллекта и создан на автоматизированном заводе. Если бы все системы ИИ завтра объявили забастовку, наша цивилизация покачнулась бы: мы не смогли бы получить деньги в банке, да и сами деньги исчезли бы, коммуникации, транспорт и производство — все бы остановилось. К счастью, наши разумные машины пока еще не настолько разумны, чтобы выкинуть подобный фокус.
На сегодня новое в сфере ИИ — это потрясающие возможности доступных для широкой публики приложений. Например, подумайте о самодвижущихся автомобилях Google (которые уже пробежали более 200 тыс. миль по большим и малым городам): эта технология позволит уменьшить число аварий, повысит пропускную способность дорог, избавит людей от рутинной водительской заботы и даст множество других важных преимуществ. Сегодня машины без водителя могут с некоторыми ограничениями передвигаться по общественным дорогам Невады, однако их повсеместное широкое распространение ожидается не раньше конца десятилетия. А вот технологии, которые следят за дорогой и предупреждают водителей о возможной опасности, уже установлены на многих моделях автомобилей. Одна такая технология отчасти основана на успешной модели обработки зрительных образов в головном мозге, предложенной Томазо Поджо из Массачусетского технологического института. Эта система под названием Mobil Eye разработана бывшим аспирантом Поджо Амноном Шашуа. Система предупреждает водителя о таких опасностях, как возможное столкновение или наличие на дороге ребенка; она уже установлена на автомобилях марок Volvo и BMW.
В данном разделе книги я подробнее остановлюсь на технологии распознавания речи, на то у меня есть несколько причин. Нет ничего удивительного в том, что иерархическая структура языка отражает иерархическую структуру мышления. Разговорная речь стала нашей первой технологией, письменный язык — второй. Моя собственная работа в области ИИ в значительной степени связана с изучением языка. Наконец, язык — очень мощное орудие. Ватсон прочел сотни миллионов страниц электронных источников информации и овладел содержащимся там материалом. Когда-нибудь машины будут способны овладевать всей существующей в Интернете информацией, которая объединяет практически все знания, накопленные нашей цивилизацией.
Английский математик Алан Тьюринг (1912–1954) разработал тест, теперь носящий его имя, который основан на способности компьютера вести беседу на человеческом языке с помощью письменных сообщений[106]. Тьюринг полагал, что в языке отражается весь человеческий разум и что никакая машина не сможет пройти тест, просто овладев языковыми приемами. Хотя в тесте используется письменная речь, Тьюринг считал, что машина смогла бы пройти его лишь при условии, что будет обладать разумом, эквивалентным разуму человека. Критики утверждали, что истинный тест на наличие у машины «человеческого» разума должен включать в себя также зрительную и слуховую компоненты[107]. Поскольку многие из созданных мной систем ИИ обучают компьютер воспринимать и обрабатывать человеческую речь, форму букв и музыкальные звуки, возможно, вы предполагаете, что я встану на защиту этой более полной версии теста для оценки интеллекта. Однако я согласен с тем, что исходной версии теста Тьюринга вполне достаточно — добавление зрительных или слуховых сигналов на входе или на выходе на самом деле совсем не усложняет прохождение теста.
Не нужно быть экспертом в области ИИ, чтобы оценить эффективность Ватсона в игре «Джеопарди!» Хотя я достаточно хорошо понимаю методологию, заложенную в основу действия его ключевых подсистем, это не ослабляет мою эмоциональную реакцию на то, что он (оно?) может делать. Даже полное понимание принципов работы всех подсистем (которого нет ни у кого) не помогает предсказать реакцию Ватсона на конкретную ситуацию. Машина содержит сотни взаимодействующих между собой подсистем, каждая из них одновременно прорабатывает миллионы альтернативных гипотез, так что предсказать ответ всей системы невозможно. Анализ мыслительного процесса, происходящего «в голове» Ватсона за три секунды при ответе на вопрос викторины, у человека занял бы несколько столетий.
Что касается моей собственной истории, в конце 1980-х и в 1990-х гг. мы начали заниматься внедрением систем распознавания человеческой речи в некоторых областях. С одной из наших систем, названной Kurzweil Voice, можно было поговорить о чем угодно, и она могла применяться для редактирования документов. Например, вы могли попросить ее передвинуть в определенное место в тексте третий параграф с предыдущей страницы. В этой ограниченной сфере машина работала достаточно хорошо. Мы также создали систему, обладавшую медицинскими знаниями, которая позволяла врачам диктовать результаты обследования пациентов. Эта машина обладала довольно обширными знаниями в области радиологии и патологии, так что она могла задать врачу вопрос, если что-то в тексте было неясно, и направляла врача по ходу составления отчета. Эта система стала основой многомиллиардного бизнеса компании Nuance.
Понимание естественной речи, особенно в качестве приложения к автоматическим системам распознавания речи, теперь стало элементом серийной продукции. В то время, когда я писал эту книгу, автоматизированный персональный помощник Сири, установленный на модели айфона 4S, произвел фурор в мире сотовых телефонов. Вы можете спросить или попросить Сири практически обо всем, что должен знать и уметь каждый уважающий себя смартфон, например: «Где здесь поблизости индийский ресторан?», или «Сообщи моей жене, что я уже иду», или «Что думают люди о новом фильме Брэда Питта?» — и практически всегда Сири исполняет поручение. Сири может в некоторой степени поддерживать беседу на общие темы. Если вы спросите ее, в чем заключается смысл жизни, она ответит: «42». Поклонники фильма «Автостопом по галактике» знают, что это «ответ на главный вопрос о жизни, вселенной и всяком таком». На вопросы на знание (включая вопрос о смысле жизни) может ответить описанная ниже программа Wolfram Alpha. Существует уже целый мир «чат-ботов», которые нужны только для того, чтобы болтать. Если вы захотите поболтать с нашим чат-ботом по имени Рамона, зайдите на сайт KurzweilAI.net и кликните по ссылке Chat with Ramona.