MyBooks.club
Все категории

Мэтт Ридли - Геном: автобиография вида в 23 главах

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Мэтт Ридли - Геном: автобиография вида в 23 главах. Жанр: Биология издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Геном: автобиография вида в 23 главах
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
441
Читать онлайн
Мэтт Ридли - Геном: автобиография вида в 23 главах

Мэтт Ридли - Геном: автобиография вида в 23 главах краткое содержание

Мэтт Ридли - Геном: автобиография вида в 23 главах - описание и краткое содержание, автор Мэтт Ридли, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Стремительное развитие генетики в последние два десятилетия называют не иначе как революцией. Начиная с 1990-х годов, когда в практику вошли принципиально новые методы исследований ДНК, каждый год приносит больше открытий, чем было сделано за все предыдущие годы, начиная со старины Менделя.Генетика развивается столь стремительно, что уследить за тем, как изменяются наши представления о фундаментальных основах жизни и наследственности, не успевает не только широкая публика, но и специалисты. Это порождает массу слухов и домыслов о страшных мутантах, которых коварные ученые штампуют в своих лабораториях, тогда как поразительные открытия новых методов диагностики и лечения генетических заболеваний, включая рак, остаются незамеченными или непонятыми. Книга Мэтта Ридли очень актуальна. Просто и доступно автор представил историю генетики от первых догадок до ошеломляющего прорыва, начавшегося с открытия структуры ДНК Уотсоном и Криком.На английском языке книга вышла в свет в конце 1999 года, в канун нового тысячелетия. Но эта книга по-прежнему занимает топовые позиции в рейтингах продаж по всему миру. В ней есть то, что не устаревает: дух научных открытий и история генетики, представленная со всем драматизмом споров, дискуссий, озарений одних ученых и черной завистью других.

Геном: автобиография вида в 23 главах читать онлайн бесплатно

Геном: автобиография вида в 23 главах - читать книгу онлайн бесплатно, автор Мэтт Ридли

Что произойдет, если мы скрестим между собой мышей этих двух видов, P. maniculatus и P. polionatus? Внешний вид потомства будет зависеть от того, к каким видам относились самец и самка. Если взять самца P. maniculatus (с беспорядочными половыми связями), то у самки P. polionatus родятся мышата невероятно крупного размера. Если отцом будет моногамный P. polionatus, то у самки P. maniculatus мышата родятся очень мелкими. Вы уловили суть эксперимента? Отцовские гены вида P. maniculatus развивались в условиях жесткой конкурентной борьбы в утробе за материнские ресурсы с другими эмбрионами, некоторые из которых даже не были их родственниками. Материнские гены P. maniculatus, в свою очередь, развивались таким образом, чтобы позволить матери урезонить свои слишком активные эмбрионы. Отцовские и материнские гены вида P. polionatus эволюционировали в гораздо менее агрессивных условиях, поэтому у самки данного вида не было средств, чтобы противостоять отцовским генам вида P. maniculatus, а отцовские гены P. polionatus были недостаточно активными, чтобы эмбрионы могли взять свое в утробе самки P. maniculatus. Это вело к тому, что в одном эксперименте мышата оказались слишком большими, а в другом — недоразвитыми. Яркая иллюстрация к теме импринтинга генов[148].

Никакая теория не обходится без изъянов. Данная теория слишком проста, чтобы быть правдоподобной. В частности, исходя из этой теории, можно предположить, что изменения в диверсифицированных генах должны происходить довольно часто, поскольку временный успех одного из генов в паре генов-антагонистов стимулирует развитие другого гена. Но сравнение диверсифицированных генов у разных видов не подтвердило эту догадку. Напротив, оказалось, что такие гены довольно консервативны. Все больше становится ясно, что теория Хэйга объясняет лишь некоторые случаи импринтинга[149].

Импринтинг генов ведет к удивительным последствиям. У мужчин материнская копия хромосомы 15 содержит в себе знак того, что она пришла от матери. Но уже в следующем поколении у дочери или сына эта же хромосома будет содержать знак отцовского происхождения. В какой-то момент должно произойти переключение знака хромосомы на противоположный. Нет сомнений в том, что такое переключение происходит, поскольку только этим можно объяснить синдром Ангельмана. Никаких видимых повреждений на хромосоме 15 нет, просто две хромосомы ведут себя так, как будто обе произошли от отца. Это объясняется тем, что в нужный момент в организме матери не произошло переключение знака хромосомы. Возникновение данной проблемы можно проследить в поколениях и обнаружить мутацию в небольшом участке ДНК, непосредственно примыкающем к диверсифицированным генам. Это так называемый центр импринтинга, который каким-то образом указывает на происхождение хромосомы. Импринтинг генов осуществляется с помощью метилирования — биохимического процесса, о котором мы уже говорили при рассмотрении хромосомы 8[150].

Как вы помните, метилирование «буквы» C осуществляется клеткой для того, чтобы отключить ненужные гены и взять под домашний арест эгоистичные самокопирующиеся участки ДНК. Но на ранних этапах развития эмбриона при образовании так называемых бластоцитов происходит деметилирование хромосом. Гены затем вновь метилируются на следующем этапе развития эмбриона — гаструляции. Однако деметилирование происходит не полностью. Диверсифицированным генам как-то удается ускользнуть от данного процесса, при этом активизируется либо только материнский ген, либо только отцовский, тогда как другой парный ген остается метилированным (неактивным). Существует много версий того, как это все происходит, но пока нет ни одного экспериментально подтвержденного варианта[151].

Именно неполное деметилирование диверсифицированных генов делает такой сложной задачей клонирование млекопитающих. Например, жаб можно очень просто клонировать, взяв ядро из любой клетки тела и поместив его в яйцеклетку. Но такую процедуру не удается выполнить с клетками млекопитающих, поскольку в любой клетке как женского, так и мужского организма какая-то часть генов, важных для развития эмбриона, обязательно отключена в результате метилирования. Поэтому вскоре после открытия явления импринтинга генов было заявлено, что клонирование организма млекопитающих в принципе невозможно. В клонированном эмбрионе диверсифицированные гены будут либо включены, либо выключены на обеих хромосомах, что приведет к дисбалансу в развитии эмбриона. «Таким образом, — делает вывод ученый, открывший импринтинг генов, — успешное клонирование млекопитающих с помощью ядер соматических клеток представляется невозможным»[152].

Тем не менее совершенно неожиданно в 1997 году в Шотландии появилась клонированная овца Долли. До сих пор создателям Долли и других клонов, вскоре последовавших за ним, не совсем ясно, как удалось обойти проблему импринтинга. Похоже, что процедуры, которым подвергалась соматическая клетка перед клонированием, стерли всю информацию о происхождении хромосом[153].

Диверсифицированный участок хромосомы 15 содержит около восьми генов. Ген, отсутствие которого ведет к развитию синдрома Ангельмана, называется UBE3A. Непосредственно за ним следуют два других гена, которые считают основными кандидатами на роль генов, вызывающих синдром Прадера-Вилли. Эти гены называются SNRPN и IPW. До конца их роль не установлена, но можно предположить, что виною всему является поломка в гене SNRPN.

В отличие от других генетических заболеваний данные синдромы вызваны не мутациями в соответствующих генах, а другими причинами. При формировании яйцеклетки в яичниках обычно ей достается одна пара хромосом. В редких случаях происходит сбой во время разделения хромосом, и в одной яйцеклетке оказываются две парные хромосомы. После оплодотворения такой яйцеклетки в ней уже оказывается три пары хромосом: две от матери и одна от отца. Обычно такое случается при позднем материнстве и заканчивается, как правило, гибелью эмбриона. Только в том случае, если в яйцеклетке оказывается три хромосомы 21, которая является самой маленькой хромосомой человека, эмбриону удается выжить. При этом рождается ребенок с синдромом Дауна. Во всех остальных случаях наличие лишней хромосомы ведет к такой диспропорции биохимических реакций в клетках, что развитие эмбриона становится невозможным.

Яйцеклетка не столь беззащитна перед превратностями судьбы. В короткий период от оплодотворения до начала развития эмбриона она может освободиться от лишней хромосомы. В результате в клетке остается, как и положено, две парные хромосомы. Но в механизме удаления лишней хромосомы не учитывается ее происхождение, поэтому удаление происходит случайным образом. Хотя случайное удаление гарантирует, что в 66% случаев клетка избавится от одной из материнских хромосом, изредка удаляется отцовская хромосома, и развитие эмбриона продолжается с двумя материнскими хромосомами. Опять таки, как правило, это не имеет большого значения, но не в случае с хромосомой 15. Если в яйцеклетке оказались две материнские хромосомы 15, то сразу два гена UBE3A, вместо одного, включаются в работу, но не работает ни один ген SNRPN. И как результат — синдром Прадера-Вилли[154].

На первый взгляд ген UBE3A не кажется таким уж важным. Его продуктом является E3 убихинон лигаза — белковый клерк среднего уровня с не вполне ясной функцией, которая работает в некоторых тканях кожи и в лимфатических клетках. Позже, в 1997 году, сразу три группы ученых обнаружили, что этот ген включается также в тканях мозга как у мышей, так и у человека. Вот это важное открытие! Оба синдрома, Прадера-Вилли и Ангельмана, указывают на определенные органические повреждения мозга больных. Более того, оказалось, что и многие другие диверсифицированные гены работают в мозгу. При исследовании мозга мыши были получены данные о том, что лобные доли развиваются в большей степени под контролем генов матери, тогда как за гипоталамус несут ответственность отцовские гены[155].

Дисбаланс был обнаружен с помощью одного тонкого метода, состоящего в создании «химерных» организмов. Химерами в генетике называют организмы, полученные в результате слияния клеток двух генетически неоднородных организмов. Такое случается в природе, в том числе у людей. Человек никогда не догадается, что он является «химерой», если не произвести детальный генетический анализ. Просто два эмбриона на самых ранних стадиях развития объединяются и продолжают развитие как один организм. Можно рассматривать данный феномен как явление, обратное появлению однояйцовых близнецов. Вместо двух организмов с одинаковым геномом, получается один организм, клетки которого содержат хромосомы двух разных геномов.


Мэтт Ридли читать все книги автора по порядку

Мэтт Ридли - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Геном: автобиография вида в 23 главах отзывы

Отзывы читателей о книге Геном: автобиография вида в 23 главах, автор: Мэтт Ридли. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.