MyBooks.club
Все категории

Роберт Бертон - Чувства животных

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Роберт Бертон - Чувства животных. Жанр: Биология издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Чувства животных
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
132
Читать онлайн
Роберт Бертон - Чувства животных

Роберт Бертон - Чувства животных краткое содержание

Роберт Бертон - Чувства животных - описание и краткое содержание, автор Роберт Бертон, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Живо написанный и очень хорошо иллюстрированный очерк о работе органов чувств животных в связи с их поведением. Автор умело сочетает высокий научный уровень с доступностью изложения. Незаметно, без напряжения он вводит читателя в курс сложнейших исследований, теорий и гипотез, в основе которых лежат современные методы изучения поведения животных.Книга предназначена для широких кругов читателей-неспециалистов, для преподавателей и учащихся средней школы. Может оказаться полезной для студентов биологических факультетов, а также для инженеров, физиков, математиков, занимающихся проблемами бионики и нейрокибернетики.

Чувства животных читать онлайн бесплатно

Чувства животных - читать книгу онлайн бесплатно, автор Роберт Бертон

1 — стремечко; 2 — овальное окно; 3 — лестница преддверия; 4 — геликотрема; 5 — барабанная лестница; 6 — круглое окно; 7 — кохлеарный проток; 8 — покровная мембрана; 9 — базилярная мембрана; 10 — нервные волокна; 11 — волосковые клетки.


Однако эту теорию легко опровергли опыты с перерезкой волокон базилярной мембраны. Перерезанные очень острым скальпелем концы не отскакивали в стороны, а значит, волокна не были напряжены и, следовательно, не могли резонировать. Более близкая к истине, но и более сложная теория была разработана совсем недавно. В экспериментах использовали маленький поршень, помещенный на место стремечка. Движениями этого поршня можно было механически управлять таким образом, чтобы улитке посылались волны известной частоты. Амплитуда и скорость волн увеличивались по мере распространения их по улитке, пока не достигали максимума, и затем волны замирали. Амплитуда и скорость колебаний различной частоты, создаваемых поршнем, достигали максимума в различных местах базилярной мембраны. Высокочастотные колебания достигали максимума вблизи поршня, а низкочастотные — около вершины улитки, на другом конце мембраны. Это подсказало возможный прямой способ механического анализа частот при участии базилярной мембраны. Но анализ этот не прост, так как даже чистый тон одной частоты заставляет вибрировать значительный участок мембраны.

Во время этих экспериментов было обнаружено, что базилярная мембрана несет небольшой электрический заряд, сходный с зарядом, который несет нервное окончание в тельце Пачини. В отсутствие вибраций величина заряда постоянна, но, когда проходят волны давления, она начинает колебаться. Если надавить на базилярную мембрану, заряд увеличивается, а если мембрану приподнять, то он ослабевает. Такие изменения постоянного заряда возникают в результате изгибания волосковых клеток, когда колеблющаяся базилярная мембрана также заставляет их колебаться. Эти изменения заряда точно соответствуют как по частоте, так и по амплитуде изменениям давления в жидкости улитки, которые создаются вибрирующим поршнем. Здесь происходит то же самое, что и в микрофоне и в пачиниевом тельце (гл. 1). Описанные выше меняющиеся заряды называются кохлеарными микрофонными потенциалами из-за их сходства с электрическими колебаниями в микрофоне. Они стимулируют нервные волокна, и таким образом возникают импульсы, которые направляются в мозг. Картина последовательных нервных импульсов, возникающая даже при действии чистого тона, очень сложна и не зависит явно от частоты этого тона. Вопрос о том, как мозг анализирует эти последовательные импульсы, выходит за рамки нашей темы, однако можно сказать, что любая информация, которую несут звуки, анализируется в мозгу с учетом той информации, которая продолжает поступать к органу слуха.

Ухо чувствительно не только к частоте и громкости звуков; оно может также определять, откуда приходят звуки. Такие животные, как олень или осел, имеющие подвижные ушные раковины, устанавливают местоположение источника звука, поворачивая их до тех пор, пока звук не станет возможно более громким. Этот же принцип используется при навигации по радиомаякам: приемная антенна поворачивается до тех пор, пока сигнал маяка не становится максимальным; в этом случае направление оси антенны совпадает с направлением, откуда приходят сигналы.

Стоит только понаблюдать за козой (фото 1) [1] кошкой или собакой, чтобы увидеть, как они пользуются своими ушными раковинами для улавливания звука. Если мимо поля, где пасется коза, проезжает машина, уши козы поворачиваются по кругу, прослеживая за движением машины по дороге. А когда приближается второй автомобиль, коза поворачивает одно ухо назад, чтобы сосредоточить внимание на обоих звуках сразу, и если двигатель одной из машин вдруг «выстрелит», коза запрядет ушами, защищаясь от шума.

Фиг. 7. Диаграмма, характеризующая теоретически рассчитанную чувствительность уха козы к звукам, приходящим с разных сторон

Если у козы удалена ушная раковина, коза почти одинаково слышит все звуки, с какой бы стороны они ни приходили. Ушная раковина делает ухо наиболее чувствительным к звукам, источник которых находится прямо против этой раковины. Шкала отградуирована в относительных единицах, характеризующих чувствительность уха.


Простой опыт с моделью уха козы показывает, как ушная раковина увеличивает способность животного более точно определять направление, в котором находится источник звука. Такая модель с вмонтированным в нее микрофоном устанавливается на вращающемся столике на некотором расстоянии от источника звука. При вращении столика регистрируется сила тока, поступающего от микрофона. Результаты этих опытов представлены в виде диаграммы на фиг. 7. Ухо козы наиболее чувствительно к звукам, источник которых находится несколько сбоку от животного, и плохо воспринимает звуки, приходящие сзади.

В течение долгого времени ушные раковины человека наряду с аппендиксом приводили в качестве примера органов, потерявших свои первоначальные функции и сохранившихся лишь в качестве рудиментов. Считалось, что когда-то они были похожи на уши козы или оленя. Некоторые из нас все еще могут двигать ушами, но, конечно, не настолько хорошо, чтобы защищаться таким образом от неприятных звуков. Несколько лет назад было обнаружено, что ушные раковины человека не так бесполезны, как это казалось. Они, вероятно, не столь эффективны в качестве собирающих воронок, помогающих слышать слабые звуки, но играют важную роль в определении направления, откуда приходят звуки. В 1968 году были опубликованы результаты исследований, проведенных на людях; эти исследования служат хорошим примером того, как совсем простые тесты или наблюдения могут показать, что наши прежние представления, основанные часто лишь на предположениях, нередко оказываются совершенно неверными. Первыми шагами, которые направили нас по верному пути, были исследования, показавшие, что при деформации ушной раковины человеку становится трудно точно определять положение источника звука. Если бы ушная раковина служила просто коллектором звуков, наподобие слуховой трубки, то ее деформация привела бы только к ослаблению способности уха слышать очень тихие звуки; оказалось, однако, что ушная раковина предназначена еще и для каких-то других целей.

Первоначально возможности таких экспериментов были ограничены, поскольку ушные раковины человека можно деформировать лишь до известного предела, не рискуя вызвать необратимые повреждения. Кроме того, ушные раковины человека невозможно заменить ушными раковинами других конфигураций и оценить их эффект. Проблема была решена, когда изготовили модели ушных раковин человека с вмонтированными в слуховой проход микрофонами. Воспринятые такими моделями звуки передавались затем экспериментатору с помощью специальных наушников. Опыты показали, что хрящевые бугорки в наших ушных раковинах действуют подобно дросселям, задерживая звук, когда он входит в ухо. Величина этой задержки зависит от угла, характеризующего направление на источник звука. Оценивая разницу во времени прихода звука к каждому уху, мозг способен определить местонахождение источника звука. Если этот источник расположен прямо впереди или сзади, звук приходит в оба уха одновременно; если он находится слева, то требуется больше времени, чтобы звук достиг правого уха, и т. д.

Существуют два других способа, с помощью которых животные определяют местонахождение источника звука; в зависимости от размеров головы и длины звуковой волны различные животные пользуются этими способами в большей или меньшей степени. Даже в отсутствие ушной раковины ухо обладает разной чувствительностью к звукам, приходящим с разных сторон (фиг. 7). Используя оба уха, можно определить местонахождение источника звука с помощью стереоскопического слуха, точно так же как определяется расстояние с помощью стереоскопического зрения. Положение источника звука оценивается на основе различной громкости звука в каждом ухе или времени его прихода в каждое ухо. Если частота звука превышает 15 кГц, голова служит для него своего рода препятствием, подобно волнорезу, на задней стороне которого звуковые волны отсутствуют. Вследствие этого ухо, расположенное ближе к источнику звука, регистрирует значительно более громкие сигналы, чем то, которое находится дальше от него. Кроме того, оценивается и разница во времени прихода звуковой волны к каждому уху. Если источник звука расположен на одинаковом расстоянии от каждого уха, то звуковая волна достигает обоих ушей одновременно. Если голова повернута всего лишь на 5° в сторону, разница во времени составляет 0,00004 с, а при повороте на 90° эта разница составит 0,0005 с. При наличии определенной разницы в громкости звука и во времени его прихода к ушам мозг способен уловить небольшие различия между сигналами, приходящими от каждого уха. Он может различать сигналы, отстоящие друг от друга во времени не менее чем на 0,0001 с, что представляет собой сравнительно большой временной интервал. Этот недостаток в какой-то степени корректирует дроссельная система, имеющаяся в наших ушах, или движения головы из стороны в сторону, в результате чего каждое ухо по изменению громкости звука может очень точно определять местонахождение его источника; точно так же поступает коза, когда двигает ушными раковинами. Но даже все эти приспособления не очень эффективны при определении местонахождения источника звука, и обнаружить его обычно помогает зрение.


Роберт Бертон читать все книги автора по порядку

Роберт Бертон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Чувства животных отзывы

Отзывы читателей о книге Чувства животных, автор: Роберт Бертон. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.