похожие друг на друга (например, параллельные отсеки, а для человека – несколько соседних одинаковых комнат). Как показали Гривс и Дудченко, когда животное впервые попадает в такую ситуацию, в каждом из идентичных мест паттерны возбуждения нейронов места обычно повторяются, и это значит, что животное не может различить эти места. Но через некоторое время крыса понимает, что эти места разные. Гривс с коллегами предполагают, что животное, проведя некоторое время в определенном месте, собирает информацию о нем с помощью интегрирования по траектории, и в конечном итоге его нейроны решетки в каждом месте не повторяют паттерны возбуждения, а вырабатывают «глобальный» паттерн, охватывающий всю окружающую среду. Эта информация затем возвращается в нейроны места, которые постепенно формируют более точную когнитивную карту.
Roddy M. Grieves et al. (2017). Field repetition and local mapping in the hippocampus and medial entorhinal cortex // Journal of Neurophysiology. 118 (4). Р. 2378–2388. См. также:
Francis Carpenter et al. (2015). Grid cells form a global representation of connected environments // Current Biology. 25. Р. 1176–1182.
У крыс даже может меняться активность нейронов места – детализация когнитивных карт – в зависимости от вероятности получить вознаграждение в конце маршрута. Чем выше вероятность найти еду, тем выше плотность полей места. Valerie L. Tryon et al. (2017). Hippocampal neural activity reflects the economy of choices during goal-directed navigation // Hippocampus. 27 (7). Р. 743–758. Результаты недавнего исследования указывают, что присутствие вознаграждения также влияет на организацию нейронов решетки: Charlotte N. Boccara et al. (2019). The entorhinal cognitive map is attracted to goals // Science. 363 (6434). Р. 1443–1447.
Например: H. Freyja Ólafsdóttir. Francis Carpenter and Caswell Barry (2016). Coordinated grid and place cell replay during rest // Nature Neuroscience. 19. Р. 792–794.
Как и следовало ожидать, последовательность возбуждения нейронов места при прохождении того же маршрута после бессонной ночи совсем не похожа на первоначальную: Lisa Roux et al. (2017). Sharp wave ripples during learning stabilize the hippocampal spatial map // Nature Neuroscience. 20. Р. 845–853.
Повторение появляется у крыс только через три недели после рождения, и это значит, что до этого времени у них не формируется память о пройденном пути. Usman Farooq and George Dragoi (2019). Emergence of preconfigured and plastic time-compressed sequences in early postnatal development // Science. 363 (6423). Р. 168–173.
H. Freyja Ólafsdóttir et al. (2015). Hippocampal place cells construct reward related sequences through unexplored space // eLife 2015;4: e06063.
H. Freyja Ólafsdóttir. Francis Carpenter and Caswell Barry (2017). Task demands predict a dynamic switch in the content of awake hippocampal replay // Neuron. 96. Р. 1–11.
Эта реакция наблюдается в заднем отделе гиппокампа; передний отдел больше реагирует на прямое расстояние (его еще называют «евклидовым» расстоянием). Исследователям удалось отличить евклидово расстояние от пройденного расстояния из-за извилистых улиц Сохо, где разница между этими двумя величинами может быть существенной. Объяснение разных ролей переднего и заднего отделов гиппокампа см. в главе 4, примеч. 7.
Эти результаты были опубликованы в двух статьях: Lorelei R. Howard et al. (2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation // Current Biology. 24. Р. 1331–1340; Amir-Homayoun Javadi et al. (2017). Hippocampal and prefrontal processing of network topology to simulate the future // Nature Communications. 8. Р. 146–152.
Впоследствии группа Хьюго Спирса обнаружила, что гиппокамп наиболее активен, когда люди прокладывают путь к цели в незнакомой обстановке; в знакомой местности, например в университетском городке или в районе, где вы живете, в процессе навигации участвует в основном ретроспленальная кора, а не гиппокамп. Это значит, что гиппокамп отчасти настроен на планирование или оценку маршрутов в новой обстановке, а долговременная пространственная память хранится в других отделах мозга, таких как ретроспленальная кора. См.: Eva Zita Patai et al. (2019). Hippocampal and retrosplenial goal distance coding after long-term consolidation of a real-world environment // Cerebral Cortex. 29 (6). Р. 2748–2758.
Открытие, согласно которому улицы с большой связностью вызывают усиление активности мозга, было предвосхищено серией поведенческих исследований парижских таксистов. Французский психолог Жан Пейлхауз несколько лет изучал, как таксисты запоминают город. Он обнаружил, что самый эффективный метод – создать мысленную карту на основе сети пересекающихся проспектов и бульваров и прокладывать маршрут, используя эту сеть как базу для прокладки более далеких маршрутов. И психология, и нейробиология согласны, что для ориентирования в городе ключевым аспектом является связность. См.: Jean Pailhous. La représentation de l’espace urbain. Presses Universitaires de France, 1970.
В этом исследовании не было найдено свидетельств «предварительной оценки»: активность гиппокампа не повышалась, когда участники эксперимента пытались понять, куда следует поворачивать на перекрестке. Спирс предположил, что решением таких задач занимается другой отдел мозга, префронтальная кора.
Albert Tsao, May-Britt Moser and Edvard I. Moser (2013). Traces of experience in the lateral entorhinal cortex // Current Biology. 23. Р. 399–405.
Jacob M. Olson. Kanyanat Tongprasearth, Douglas A. Nitz (2017). Subiculum neurons map the current axis of travel // Nature Neuroscience. 20. Р. 170–172.
Они были обнаружены не в гиппокампе, а в ретроспленальной коре. Pierre-Yves Jacob et al. (2017). An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex // Nature Neuroscience. 20. Р. 173–175. Обсуждение различных типов нейронов направления головы, обнаруженных в мозге, и их возможных ролей см.: Paul Dudchenko, Emma Wood and Anna Smith (2019). A new perspective on the head direction cell system and spatial behavior // Neuroscience and Biobehavioral Reviews. 105. Р. 24–33.
Ayelet Sarel et al. (2017). Vectorial representation of spatial goals in the hippocampus of bats // Science. 355 (6321). Р. 176–180.
Roddy M. Grieves and Kate J. Jeffery (2017). The representation of space in the brain // Behavioral Processes. 135. Р. 113–131.
Социальная сеть, запрещенная в РФ. – Примеч. ред.
Эссе Блейка Росса опубликовано здесь: https://www.facebook.com/notes/blake-ross/aphantasia-how-itfeels-to-be-blind-in-your-mind/10156834777480504/