Согласно модели прерывистого равновесия, эволюция представляет собой чередование резких коротких скачков, когда и происходит видообразование, с долгими периодами стабильного состояния – стазиса. Важную роль сторонники нового направления отводили разграничению механизмов микро– и макроэволюции, в очередной раз подчеркивая, что внутрипопуляционная изменчивость не ведет к видообразованию. Авторы справедливо указывали на слабый обмен генами между популяциями вида. Ключевое значение в процессе видообразования они придавали изменениям в регуляторных генах. Последующие исследования генетиков подтвердили обоснованность этого положения. В рамках теории прерывистого равновесия было разработано понятие видового отбора как одного из основных факторов макроэволюции, который характеризует баланс образующихся и вымирающих видов (Stanley S., 1979).
Почти одновременно возникают концепции «недарвиновской» эволюции, предложенные молекулярными генетиками (Оно C., 1973; Кимура М., 1985). Правда, их авторы не отвергали дарвинизм, а рассматривали свои теории как его развитие и анализ на молекулярном уровне. Теория нейтральности М. Кимуры (1924–1994) постулирует нейтральный характер большинства мутаций. Только некоторые мутации полезны или вредны, а значит, подвержены действию естественного отбора. Споры вокруг «удельного веса» нейтральных мутаций не прекращаются до сих пор.
Еще раньше английским эволюционистом В. Винн-Эдвардсом (1906–1997) была выдвинута теория группового отбора, согласно которой объектом отбора является группа (Wynne-Edwards V., 1962). В СТЭ таким объектом является отдельная особь. Рождение теории сопровождалось бурными дискуссиями, но она не встретила поддержки большинства эволюционистов. Интересным примером сторонников концепции группового отбора является адаптивная ценность для группы процесса старения, поскольку он ограничивает численность группы и «очищает» ее от изношенных особей.
Исходя из теории группового отбора, тем же В. Винн-Эдвардсом была предложена концепция саморегуляции – способности группы регулировать свою численность на оптимальном уровне (Wynne-Edwards V., 1965). Эта концепция была подхвачена противниками СТЭ как опровергающая базовый постулат дарвинизма о тенденции к безграничному размножению и борьбе за существование. Особый резонанс имела экстраполяция концепции на человеческое общество. Была проведена аналогия между нашей цивилизацией и перенаселенной колонией бактерий, в которой включаются механизмы программированной гибели отдельных особей в интересах выживания остальных (Олескин А. В., 2001).
Однако наиболее радикальные изменения взглядов в эволюционной биологии произошли в конце XX в., после открытия эпигенетических закономерностей и распространенности в природе горизонтального переноса. Организация и функционирование генетического аппарата разных организмов оказались значительно более разнообразными и сложными, чем предполагалось ранее (Голубовский М. Д., 2000). Новую остроту приобрели старые «трудные» вопросы эволюционной теории. Это проблемы направленности эволюции, роли естественного отбора, природы адаптации, причин неравномерности темпов эволюции, неполноты палеонтологической летописи, вымирания крупных таксонов на границе геологических эпох и многие другие. Все эти проблемы вытекают из фундаментальных вопросов относительно механизмов макроэволюции, вызывающих острые разногласия. Не меньше споров вызывают механизмы видообразования и само понятие вида.
Кратко рассмотрим некоторые положения этих разделов эволюционной теории.
2.3. Вопросы макроэволюции и видообразования
Поскольку приспособительные изменения популяций (микроэволюция) разительно отличаются от картины разнообразия органического мира (макроэволюция), постоянно идет спор о наличии в макроэволюционных процессах особых факторов, не обнаруживаемых на микроэволюционном уровне. Именно взгляды на макроэволюцию изначально разграничивали конфликтующие стороны в эволюционной биологии. Среди эволюционистов, разделяющих положения СТЭ, преобладают взгляды о единстве механизмов микро– и макроэволюции. В лагере сторонников особых механизмов макроэволюции находятся практически все приверженцы альтернативных концепций. Однако ни одному направлению не удалось создать общепринятую теорию, связав воедино широкий круг вопросов.
Наиболее долгую историю среди вопросов макроэволюции имеет проблема взаимоотношения онтогенеза (индивидуального развития) и филогенеза.
Филогенез – историческое преобразование организмов (точнее, линия развития данного типа организации). О филогенезе таксона приходится судить на основании реконструкций изменений отдельных признаков. Поскольку филогенез крупных таксонов занимает десятки миллионов лет, экстраполяции столь продолжительных этапов неизбежно сопряжены с погрешностью.
Взаимоотношение филогенеза и онтогенеза было предметом самого пристального изучения в истории биологии. Можно отметить закон «лестницы существ» Ш. Боне (1720–1793), «теорию параллелизма» И. Меккеля (1781–1833), «закон зародышевого сходства» К. Бэра (1792–1876). Современные исследования в области генетики показали, что фенотип в ходе онтогенеза не строго детерминирован генетической программой развития. Почти в любом онтогенезе можно наблюдать возможность выбора путей. Сами морфогенетические пути представляют собой каскады индукционных взаимодействий. Хотя они исключительно устойчивы, изменения возможны на любой стадии развития. Чем на более ранней стадии онтогенеза возникают какие-либо изменения, тем больший фенотипический эффект мы наблюдаем. Конечно, при этом возрастает вероятность того, что такие изменения вызовут нарушения онтогенеза и образование нежизнеспособных зародышей. Зато в тех случаях, когда потомство оказывается жизнеспособным, возможны макроэволюционные события (Рэфф Р., Кофмен Т., 1986). Это положение имеет особое значение для формирования современных представлений об эволюционном процессе, и мы к нему еще вернемся.
Основной путь эволюционных преобразований в онтогенезе основан на явлении гетерохронии. Гетерохрония – это изменение относительных сроков развития. Все явления гетерохронии связаны с диссоциацией между скоростями развития соматических признаков и гонад. На этих принципах можно выделить два главных эволюционных следствия гетерохронии.
В первом случае у взрослых особей сохраняются признаки ранних стадий развития предков. Это явления педоморфоза и неотении.
Во втором случае признак взрослой предковой формы становится ювенильным признаком потомков. Это явления акселерации и гиперморфоза.
Разновидности внутри направлений выделяют исходя из основной области изменения скорости. Возможны как изменение скорости развития соматического признака при неизменной скорости развития гонад, так и, наоборот, изменение скорости развития гонад при неизменной скорости развития соматического признака. Часто эти разновидности понимают как синонимы, поскольку разграничить их трудно.
Гиперморфоз – обычный механизм увеличения размеров в эволюционном ряду. Общеизвестными примерами служат гигантские динозавры, третичные млекопитающие, современные киты, растение секвойя. Гиперморфозом объясняется и переразвитие отдельных органов, вроде клыков саблезубых тигров и бивней мамонта. Это явление нам придется вспомнить при анализе эволюции психики человека.
Классическим примером неотении служит излюбленный объект лабораторных исследований – аксолотль. Неотения и педоморфоз – это магистральные пути эволюции многих групп, в том числе и высокоорганизованных: травянистых растений, насекомых и человека.
В новом свете в современной биологии развития представляется старая проблема определенных «планов строения» в пределах систематических групп на протяжении эволюции. Их стабильность все больше привлекает внимание исследователей и начинает получать строго научные обоснования на базе генетических закономерностей.
Общность планов строения обусловливает явление гомологии – фундаментального понятия современной биологии. Это понятие было введено английским палеонтологом Р. Оуэном (1804–1892). Гомологичные органы – это органы, развивающиеся из сходных зачатков, другими словами, «занимающие одинаковые места у видов, с одинаковым планом строения» (Белоусов Л. В., 2005). Хотя рука обезьяны и крыло летучей мыши не похожи друг на друга, они являются органами гомологичными (рис. 2.1).
Рис. 2.1. Примеры гомологичных органов: а – рука обезьяны; б – крыло летучей мыши
Рис. 2.2. Примеры конвергенции: а – форма тела акулы; б – форма тела дельфина