MyBooks.club
Все категории

Ричард Докинз - Слепой часовщик

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Докинз - Слепой часовщик. Жанр: Биология издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Слепой часовщик
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
13 февраль 2019
Количество просмотров:
434
Читать онлайн
Ричард Докинз - Слепой часовщик

Ричард Докинз - Слепой часовщик краткое содержание

Ричард Докинз - Слепой часовщик - описание и краткое содержание, автор Ричард Докинз, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга посвящена современным аспектам теории эволюции. Докинз — убежденный дарвинист, и в свойственном ему легком стиле, но без всяких упрощений, излагает наиболее сложные положения теории Дарвина настолько ясно, что в верности этой теории не остается никаких сомнений.

Слепой часовщик читать онлайн бесплатно

Слепой часовщик - читать книгу онлайн бесплатно, автор Ричард Докинз

По теории, чем выше используется тон звука, тем точнее производится эхолокация — потому, что у звуков низкого тона большая длина волны, которая не позволяет различать близко расположенные объекты.[3] Поэтому летательному снаряду, использующему эхолокацию в системе наведения, при прочих равных условиях было бы целесообразно генерировать очень высокие звуки. И в самом деле — большинство летучих мышей используют чрезвычайно высокие звуки, намного более высокие, чем те, которые люди могут слышать — ультразвуки. В отличие от Rousettus, которые видят очень хорошо, и которые используют неизменяющиеся относительно низкие звуки для своей скромной эхолокации в дополнение к своему хорошему зрению, более мелкие летучие мыши, судя по всему, — технически высокоразвитые механизмы эхолокации. У них крошечные глаза, которые в большинстве случаев не могут увидеть много. Они живут в мире эхо, и, вероятно, их мозг может на основании эхо производить что-то вроде «построения изображений», хотя нам почти невозможно представить, как бы могло выглядеть такое изображение. Шум, который они производят, не просто слегка выше того, что люди могут слышать, вроде своего рода пронзительного визга супер-собаки. В многих случаях он значительно выше того, что какое-либо существо может услышать или вообразить. И кстати, нам очень повезло, что мы не можем их слышать, ибо это очень мощные звуки, и для нас они были бы оглушительно громки — при такой громкости мы вряд ли смогли бы спать.

Эти летучие мыши, как миниатюрные самолёты-разведчики, нашпигованы изощрённой аппаратурой. Их мозг — это тонко настроенный пакет миниатюрных штучек для электронного колдовства, запрограммированных сложным программным обеспечением, необходимым для расшифровки мира эхо в режиме реального времени. Их мордочки часто искривлены в фантастические горгульи, представляющиеся нам отвратительными, — до тех пор, пока мы не видим для чего они нужны — это изысканно скроенные инструменты для излучения ультразвука в нужных направлениях. Хотя мы не можем непосредственно слышать импульсы ультразвука этих летучих мышей, но мы можем понять происходящее посредством аппаратуры перевода или «бат-детектора». Он принимает импульс специальным ультразвуковым микрофоном и преобразует его в слышимый щелчок или тон, который мы уже можем слышать в наушниках. Если мы возьмём такой «бат-детектор» на лесную вырубку, где кормятся летучие мыши, то мы услышим каждый испускаемый ими импульс, хотя мы не можем слышать, как этот импульс в действительности «звучит». Если наши летучие мыши — Myotis, а это одна из обычных у нас небольших коричневых летучих мышей, то мы услышим щелчки с частотой примерно 10 щелчков в секунду (10 Герц), когда она курсирует по своему обычному маршруту. Это примерно частота работы стандартного телетайпа или скорострельного пулемёта.

Возможно, что образ мира, в котором крейсирует летучая мышь, обновляется 10 раз в секунду. Наш с вами визуальный образ мира представляется нам беспрерывно, пока наши глаза открыты, обновляющимся. Мы можем видеть, как мог бы выглядеть дискретно обновляющийся образ мира, включив ночью стробоскоп. Их иногда используют на дискотеках, и он производит довольно впечатляющий эффект. Танцующий человек выглядит последовательностью замороженных статичных поз. Очевидно, что чем чаще следуют импульсы строба, тем ближе полученный образ соответствует нормальному «беспрерывному» зрению. Стробоскопическое видение с частотой крейсерского полёта летучей мыши (примерно 10 образов в секунду) — даёт почти столь же хорошую картину, как и нормальное «непрерывное» зрение — для обычных целей, но не для ловли шарика или насекомого.

Но это «дежурная» частота выборки образов летучей мышью на обычном крейсерском полёте. Когда маленькая коричневая летучая мышь обнаруживает насекомое и ложится на курс его перехвата, то частота щелчков возрастает. Она щелкает при этом быстрее пулемёта, частота может достичь 200 Герц, пока она наконец не достигает свою движущуюся цель. Чтобы достичь того же эффекта, нам придётся ускорить наш стробоскоп настолько, чтобы его вспышки следовали с частотой, вдвое большей, чем полуциклы в нашей электрической сети, хотя даже эта частоту мы уже воспринимаем слитно и не видим мерцания люминесцентных ламп. Обратите внимание, что у нас при этом нет никаких проблем с выполнением наших обычных визуальных задач в их свете — даже при игре в сквош или пинг-понг, хотя наш визуальный мир при этом пульсирует на такой высокой частоте (100 Герц). Если предположить, что мозг летучей мыши строит образ мира, аналогичный нашим визуальным образам при частоте нашей сети, то можно предположить, что образ мира в эхе летучей мыши по меньшей мере столь же детализирован и «беспрерывен», как и наш с вами визуальный образ. Конечно, возможны и другие причины, приводящие к меньшей (чем у нас) детализации образа мира летучей мыши.

Если летучие мыши могут повышать частоту импульсов до 200 Герц, то почему они не поддерживают эту частоту всё время? Так как у них очевидно есть «регулятор частоты», своего «стробоскопа», то почему они не держат его постоянно на максимуме? Ведь тем самым всё время они поддерживают своё восприятие мира в его наиболее отчётливой форме и готовы отреагировать на любую критическую ситуацию? Одна из причин этого может быть в том, что высокие частоты хороши лишь для близких целей. Если импульсы следуют слишком часто, то один излучаемый импульс может слиться с эхом его предшественника от далёкой цели. Даже если это не так, то, вероятно, имеются веские экономические причины для того, чтобы не поддерживать частоту импульсов на максимальном уровне всё время. Должно быть накладно производить громкие сверхзвуковые ипульсы — накладно в смысле и энергии, и износа голоса и слуха, и может быть — в компьютерном времени. Мозг, который обрабатывает 200 раздельных эхокартин в секунду, возможно, уже не имеет запаса производительности для «размышлений» о чём-нибудь ещё. Частота выборки даже в 10 герц, вероятно, также весьма накладна, но намного меньше таковой на максимальной частоте 200 Герц. Конкретная летучая мышь, повысившая частоту своих тиков, заплатит дополнительную цену в энергии и т. д., которая не будет оправдана увеличенной точностью сонара. Когда единственный движущийся объект в округе — сама летучая мышь, то образы видимого мира, отстоящие друг от друга на десятую долю секунды вполне подобны друг другу и не нуждаются в более частой смене. Когда же в обозримой близости наличествует другой движущийся объект, особенно — летящее насекомое, бьющееся и мечущееся в отчаянной попытке избавиться от преследователя, то выгода от увеличения частоты импульсов более чем оправдывает возросшие издержки. Конечно, соображения насчёт издержек и выгод в этом абзаце — это предположение, но что-нибудь вроде этого почти наверняка должно иметь место.

Инженер, приступающий к разработке эффективного сонара или радара скоро сталкивается с проблемой, вытекающей из необходимости производить импульсы максимальной громкости. Они должны быть громкими, потому что волновой фронт излученного звука распространяется по расширяющейся сфере. Интенсивность звука распределяется и, в каком-то смысле, «растворяется» по всей поверхности сферы. Поверхность сферы пропорциональна квадрату радиуса. Поэтому интенсивность звука в любой заданной точке на поверхности сферы уменьшается не прямо пропорционально расстоянию (радиусу), а пропорционально квадрату расстояния от источника звука. Это означает, что в своём путешествии от источника (в нашем случае — летучей мыши) звук затихает довольно быстро.

Когда этот ослабленный звук достигает цели, скажем — мухи, он от неё отражается. Этот отражённый звук, в свою очередь, также излучается от мухи по расширяющемуся сферическому фронту. Как и в случае первичного импульса, он угасает пропрционально квадрату расстояния от мухи. К тому моменту, когда эхо вновь достигает летучей мыши, угасание его интенсивности оказывается пропорциональным не расстоянию от мухи до летучей мыши и даже не квадрату этого расстояния, а квадрату квадрата — т. е. четвёртой степени расстояния. Это означает, что он будет очень и очень тихим. Проблему возможно частично преодолеть, если летучая мышь будет излучать звук направленно, как из мегафона, но для этого ей нужно уже знать направление на цель. В любом случае, если летучей мыши нужно получить некое внятное эхо от всех отдалённых целей, то писк, исходящий от мыши, должен быть в самом деле очень громким; а инструмент обнаружения отражённого — ухо, должен быть очень чувствителен к слабому звуку эхо. И как мы уже знаем, летучая мышь часто и в самом деле кричит очень громко, а её уши и в самом деле очень чувствительны.

Теперь рассмотрим проблему, которая озадачила бы инженера, если б он попытался спроектировать некое подобие механической летучей мыши. Если микрофон (или ухо) будет столь чувствительным, как это требуется здесь, то он будет подвергаться большой опасности серьёзного повреждения собственным — чрезвычайно громким излученным импульсом звука. Нет смысла бороться с проблемой, снижая громкость излученного звука, ибо тогда эхо будет слишком тихим, чтобы его расслышать. И также нет смысла повышать чувствительность микрофона («уха»), ак как это сделает его более уязвимым для повреждений, путь уже несколько более тихим излученным звуком! Эта дилемма неразрывно связана с радикально различной интенсивности излученного и принятого звука, и различие это неумолимо следует из законов физики.


Ричард Докинз читать все книги автора по порядку

Ричард Докинз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Слепой часовщик отзывы

Отзывы читателей о книге Слепой часовщик, автор: Ричард Докинз. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.