MyBooks.club
Все категории

Роберт К. Мертон - Финансы

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Роберт К. Мертон - Финансы. Жанр: Деловая литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Финансы
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
23 февраль 2019
Количество просмотров:
147
Читать онлайн
Роберт К. Мертон - Финансы

Роберт К. Мертон - Финансы краткое содержание

Роберт К. Мертон - Финансы - описание и краткое содержание, автор Роберт К. Мертон, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Эта книга является базовым учебником по курсу финансов, который изучается на первом курсе института при подготовке специалистов по программе МВА. В книге рассматриваются вопросы, затрагивающие все аспекты современной финансовой науки.Авторы книги - университетские профессора Зви Боди и Роберт Мертон - детально проанализировали проблемы, с которыми все мы сталкиваемся дома и на работе. Изложение традиционных вопросов корпоративных финансов опирается на всесторонний анализ их концептуальных основ: деньги и время; оценка активов и управление риском. 

Финансы читать онлайн бесплатно

Финансы - читать книгу онлайн бесплатно, автор Роберт К. Мертон

• Увеличение дивидендной доходности приводит к снижению цен на опционы "колл" и росту цен на опционы "пут".

В частном случае, когда курс акций, лежащих в основе опциона, равен приведенному значению цены "страйк" (т.е.

), для расчета цен опционов можно использовать удобную приближенную формулу


Такое приближение справедливо и для цены опционов "пут". Таким образом, если курс акций равен 100, цена "страйк" равна 108,33 долл., срок истечения составляет один год, безрисковая процентная ставка составляет 8%, выплаты по дивидендам равны нулю, а изменчивость курса равняется 0,20, приблизительная стоимость как опциона "колл", так и опциона "пут" равна 0,08 цены акций, или 8 долл16.

Если для расчета соответствующих цен на такие опционы воспользоваться точной формулой (уравнение 15.5), окажется, что приближенная формула дает достаточно точные результаты:

15 Это относится только к американским опционам.

16 Обратите внимание на тот факт, что процентная ставка в приближенную формулу невходит.


15.8. ПОДРАЗУМЕВАЕМАЯ ИЗМЕНЧИВОСТЬ

Рабочая книга Подразумеваемая изменчивость (ппрИес! уо1а1Ш1у) определяется как такое

Ш значение о, при котором текущая рыночная цена опциона равна значе-1^ нию, рассчитанному с использованием формулы для оценки стоимости 15.8 опциона. Предположим, что В рассмотренном выше примере мы имеем значения, приведенные в левой части таблицы (включая цену 7,97 долл. для опциона "колл")

5

Е

К

Г (Г

С

о

100

108,33

0,08

1 0

7,97

?


Таблица 15.8. Факторы, определяющие цену опционов

Рост

Опцион «колл»

Опцион «пут»

Курс акций S

Цены исполнения Е

Изменчивости 

Времени до даты истечения Т

Процентной ставки r

Денежных дивидендов d

Растет

Снижается

Растет

Растет

Растет

Снижается

Снижается

Растет

Растет

Растет

Снижается

Растет


Подставив эти величины в уравнение 15.6 и решив его относительно о; найдем изменчивость курса при такой цене опциона. В данном случае подразумеваемая изменчивость курса акций равна 0,2.

На чикагской бирже по торговле опционами СВОЕ строится индекс подразумеваемой изменчивости для индекса 5Р 100, предназначенный для использования в качестве основы при заключении новых фьючерсных и опционных контрактов на базе подразумеваемой изменчивости17. Этот индекс подразумеваемой изменчивости (У1Х) предназначен для минимизации статистического отклонения при использовании информации на основе значений восьми опционов на индексы 5Р 100 со сроком истечения около 30 дней.

На рис. 15.6 показаны значения индекса подразумеваемой изменчивости У1Х за период с 1986 года по 1993 год. Видно, что в течение этого промежутка времени наблюдались некоторые флуктуации этого индекса. Во время обвала на фондовом рынке в октябре 1987 года наблюдается высокий пик. В дальнейшем значение индекса вернулось к исходному значению.

77 Детальное описание построения индекса У1Х на бирже СВОЕ можно найти у К. Е. }УНа1еу, "ВетаНуез оп Маг1се1 Уо1аИИ(у: Неарп^ Гоой 1лп^ Оуегаие ", Лита1 о/ Ветайуе5 (Ра11 1993), рр. 80-82.




15.9. АНАЛИЗ УСЛОВНЫХ ТРЕБОВАНИЙ:

КОРПОРАТИВНЫЕ ОБЛИГАЦИИ И АКЦИИ


Рабочая книга 

Анализ условных требований (contingent claims analysis) опирается на рассмотренную ранее методику создания синтетического опциона. В этом разделе мы покажем ее применение для оценки стоимости долговых обязательств и капитала фирмы при условии, что имеется информация об общей стоимости фирмы.

Наша гипотетическая фирма Debtco, проводящая операции с недвижимостью, выпустила ценные бумаги двух типов: обыкновенные акции (1 миллион акций) и бескупонные облигации общей номинальной стоимостью в 80 млн долл. (80000 облигаций номиналом 1000 долл.). Срок погашения облигаций фирмы Debtco наступает через год, считая с сегодняшнего дня. Какова отдельно рыночная стоимость акций и облигаций фирмы Debtco, если общая рыночная стоимость этой фирмы составляет 100 млн долл.? Пусть V— текущая рыночная стоимость активов фирмы Debtco (100 миллионов долл.) Е — текущая рыночная стоимость акционерного капитала Debtco D — текущая рыночная стоимость заемного капитала (облигаций) Debtco Нам известно, что общая рыночная стоимость акционерного и заемного капитала этой фирмы равна 100 млн долл.:

V = D + Е = 100 млн долл.

Мы хотим получить отдельно значения Е и D.

Рассмотрим возможные доходы владельцев ценных бумаг при наступлении через год срока погашения облигаций. Доходные диаграммы приведены на рис. 15.7 и 15.8. Если стоимость активов фирмы превышает номинальную стоимость ее долговых обязательств (т.е. если f[ 80 млн долл.), акционеры получают разность между этими двумя величинами (т.е. Fi—80 млн долл.). Однако в том случае, если стоимость активов окажется меньше 80 млн долл., компания не выполнит взятых долговых обязательств, а акционеры не получат ничего. Все активы фирмы достанутся держателям облигаций'8.

200 -

,s 160 -

I -t 120 -

»S

0

ё 80 - —————————————————

О 20 40 60 80 100 120 140 160 180 200 Стоимость фирмы через 1 год

Рис. 15.7. Доходная диаграмма для облигаций Debtco

Примечание. Если активы фирмы будут стоить меньше 80 млн долл., то держатели облигаций получат стоимость всех ее активов Если активы фирмы будут стоить больше 80 млн долл., то держатели облигаций получат только 80 млн долл.

" Такая ситуация наблюдается в том случае, если отсутствуют затраты на процедуру банкротства, а правила преимущественных выплат по обязательствам фирмы строго соблюдаются. В действительности же реализация процедуры банкротства требует определенных затрат.


Стоимость фирмы через год

Рис. 15.8 Доходная диаграмма для акций Debtco

Примечание Если активы фирмы будут стоить меньше 80 млн долл, то акционеры ничего не получат Если активы фирмы будут стоить больше 80 млн долл., то акционеры получат разность между стоимостью активов и 80 млн долл


Из рис. 15.7 видно, что, когда стоимость фирмы опускается ниже 80 млн долл., владельцы облигаций претендуют на все активы, а в случае, когда стоимость фирмы превышает 80 млн долл., владельцы облигаций получают только причитающиеся им 80 млн долл. Из рис. 15.8 следует, что если стоимость фирмы составляет меньше указанной суммы, то акционеры ничего не получают, а при стоимости фирмы, превышающей 80 млн долл., им достается разность между стоимостью фирмы и 80 млн долл.

Обратите внимание на тот факт, что доходная диаграмма для акционеров фирмы Debtco идентична доходной диаграмме для владельцев опционов "колл" если принять, что в основу опциона положены собственно активы фирмы, а цена исполнения равна номинальной стоимости долговых обязательств. Таким образом, мы можем применить для этого случая формулу 15 5, изменив соответствующим образом используемые в ней обозначения. Получаемая в результате формула, которую можно использовать для оценки стоимости акционерного капитала фирмы, имеет вид:

(15.6)


где

V— стоимость фирмы

Е— стоимость акционерного капитала фирмы

В — номинальная стоимость бескупонных дисконтных облигаций

г— безрисковая процентная ставка

f— промежуток времени до срока погашения облигаций в годах

а— стандартное отклонение непрерывно начисляемой ставки доходности активов

фирмы (в пересчете на год) In — натуральный логарифм

е — основание натурального логарифма (приблизительно 2,71828) N(d) — вероятность того, что значение нормально распределенной переменной

меньше d


Стоимость облигаций, D, по определению равна V — Е. Непрерывно начисляемая обещанная процентная ставка по долговым обязательствам R равна, таким образом,


При применении уравнения 15 6 можно пользоваться теми же программами, что и для расчета стоимости опционов в соответствии с уравнением 15.5. При этом необходимо лишь иначе интерпретировать входные и выходные данные. Пусть безрисковая процентная ставка равна 8% годовых, а изменчивость стоимости активов фирмы составляет 0,3. В этом случае вместо табл. 15.7 мы получаем таблицу 15.7а.

Стоимость заемного капитала равна V — Е:


Роберт К. Мертон читать все книги автора по порядку

Роберт К. Мертон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Финансы отзывы

Отзывы читателей о книге Финансы, автор: Роберт К. Мертон. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.