Обнаружение червоточины
Просматривая данные, собранные ЛИГО за два последних года, профессор Брэнд и его команда обнаружили очень слабые волны, исходящие от нейтронной звезды. На звезде была мини-возвышенность высотой всего лишь в сантиметр и шириной в несколько километров (предполагается, что такие возвышенности не редкость). При вращении звезды эта возвышенность тоже вращалась, порождая волны, колеблющиеся слабо, но постоянно, день за днем.
Внимательно исследуя эти волны, профессор Брэнд выяснил, откуда они исходят. Ответ был совершенно невероятным — источник волн находился где-то на орбите вокруг Сатурна! И он всегда оставался вблизи Сатурна, как бы ни перемещались по своим орбитам Сатурн и Земля!
Нейтронная звезда около Сатурна? Невозможно! Черная дыра рядом с нейтронной звездой, и обе вращаются вокруг Сатурна? Более чем невозможно! Сатурн бы давным-давно разрушился от такого соседства. Кроме того, гравитация дыры и нейтронной звезды давно сместила бы орбиты всех планет Солнечной системы, включая Землю. Со смещенной орбитой Земля то приближалась бы к Солнцу, то отдалялась бы от него — а мы бы все поджарились, замерзли и вымерли.
И все же волны определенно исходили из окрестностей Сатурна.
Профессор Брэнд видел этому лишь одно объяснение: волны идут из червоточины, которая вращается вокруг Сатурна. А источники волн — черная дыра и нейтронная звезда — находятся по другую сторону этой червоточины (рис. 16.5). Волны расходятся от звезды и от дыры, небольшая их часть попадает в червоточину, проходит сквозь нее, распространяется по Солнечной системе и частично достигает Земли, где находится детектор гравитационных волн ЛИГО.
Рис. 16.5. Гравитационные волны, идущие от червоточины к Земле
Об этой части киносценария
В краткой форме эта история (или предыстория) присутствовала в нашей с Линдой сценарной заявке к «Интерстеллар», написанной еще в 2006 году. Однако гравитационные волны не играли особой роли ни в сценарной заявке, ни в более позднем сценарии, который написал Джона и переработал Крис. И без гравитационных волн объем сложного для понимания материала в фильме был слишком велик. Поэтому, когда Крис искал способы упростить сценарий, гравитационные волны стояли на вылет первыми. И Крис от них избавился.
Лично я тяжело переживал это решение Криса. Я был одним из основателей проекта ЛИГО в 1983 году (вместе с Райнером Вайсом из Массачусетского технологического института и Рональдом Дривером из Калтеха). Я сформулировал научные позиции ЛИГО и два десятка лет упорно работал, помогая воплотить этот проект в жизнь. Сейчас проект ЛИГО близок к готовности, и уже в этом десятилетии ожидается первая регистрация гравитационных волн.
Но аргументы Криса были столь очевидны, что я и не вздумал протестовать.
Гравитационные волны и детекторы волн
А теперь, прежде чем продолжить разговор об «Интерстеллар», я позволю себе удовольствие рассказать еще немного о гравитационных волнах.
На рис. 16.6 — художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Напоминаю, что тендекс-линий порождают приливную гравитацию (см. главу 4). Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают. Когда дыры вращаются одна вокруг другой, они увлекают следом свои тендекс-линии, которые походят на струи воды из крутящейся поливалки на газоне.
Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Тендекс-линии выходят наружу, будто струи воды из поливалки, образуя сложный узор: см. рис. 16.7. Красные линии — растягивающие, синие — сжимающие.
Рис 16.6. Пара черных дыр, которые сталкиваются, вращаясь одна вокруг другой против часовой стрелки, и их тендекс-линии (Рисунок Лии Хэллоран.)
Рис. 16.7. Тендекс-линии вращающейся деформированной черной дыры (Рисунок Роба Оуэна.)
Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение — тендекс-ли-нии стали гравитационной волной. Там, где в плоскости рисунка есть синие (сжимающие) линии, есть и красные растягивающие линии, но выходящие из плоскости рисунка. А там, где на рисунке линии красные (растягивающие), есть и синие (сжимающие) линии, направленные от рисунка. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают. Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рис. 16.8. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рис. 16.8.
Рис. 16.8. Гравитационные волны, проходящие через детектор ЛИГО
Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе, и т. д. снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационно-волновая обсерватория.
Сейчас ЛИГО — интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калтехе. Проектом сейчас руководят Дэвид Рейтце (директор), Альберт Лазарини (замдиректора) и Габриэла Гонсалес (официальный представитель). Учитывая величину потенциальной выгоды от лучшего понимания Вселенной, ЛИГО финансируется в основном за счет налогоплательщиков США, через национальный научный фонд.
Гравитационные детекторы ЛИГО расположены в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана; также в планах создание третьего детектора в Индии. Ученые из Италии, Франции и Нидерландов построили интерферометр такого же типа около Пизы, а японские физики строят интерферометр в горном тоннеле. Все эти детекторы будут работать скоординированно, образуя всемирную сеть по исследованию Вселенной с помощью гравитационных волн.
Я был наставником многих ученых, работающих в ЛИГО, но в 2000 году занялся другими областями науки. Однако я активно слежу за тем, как ЛИГО и ее международные партнеры подходят все ближе к получению первых данных о гравитационных волнах.
Искривленная сторона Вселенной
«Интерстеллар» — это остросюжетная кинокартина, где люди встречаются с черными дырами, червоточинами, сингулярностями, гравитационными аномалиями и измерениями высшего порядка. Все эти объекты и явления напрямую связаны с искривлениями пространства и времени. Поэтому я и называю их «искривленной стороной Вселенной».
У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.
Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах.
Это напоминает наши сегодняшние знания об искривлении пространства и времени. Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» — когда форма пространства бурно колеблется и когда колеблется скорость течения времени. И, по-моему, это необыкновенно манящий рубеж знаний. Джон Уилер, ученый-затейник, с которым мы уже встречались в предыдущих главах, придумал для этих изменений термин «геометродинамика».
В начале шестидесятых, когда я был учеником Уилера, он убедил меня и других студентов заняться изучением геометродинамики в рамках наших исследовательских проектов. Мы попытались, но это начинание с треском провалилось. Мы недостаточно хорошо знали, как решать уравнения Эйнштейна, чтобы строить на их основе прогнозы, и у нас не было возможности наблюдать явления геометродинамики в астрономической Вселенной.