Не существует, строго говоря, «средства передвижения», которое позволило бы нам совершить путешествие в этом дополнительном измерении. Для этого пришлось бы выполнять различные странные действия, как, например, замена протонов нейтронами; речь идет о действиях, еще имеющих смысл на микроскопическом уровне, когда в них вовлечено небольшое число частиц (например, в опытах на ускорителе), но они совершенно немыслимы в куске вещества макроскопических размеров.
Поэтому надо очень осторожно относиться к появляющимся иногда в средствах массовой информации сенсационным сообщениям, не прошедшим строгой проверки. Трактовка таких сомнительных сведений может привести к ошибочным выводам. Впрочем, хотя призыв к осторожности, конечно, уместен, тем не менее надо отметить, что в настоящее время наблюдается интересный процесс обновления научных исследований и бурление всевозможных оригинальных идей в области объединения теорий. После смерти Эйнштейна многочисленные неудачи, преувеличенный академизм некоторых научных публикаций определенного сорта привели к падению интереса и доверия к усилиям, предпринимающимся на полном приключений пути к объединению. События последних двадцати пяти лет вдохнули новую жизнь в этот процесс. Нужно упомянуть среди них техническую революцию, позволившую осуществить ранее немыслимые способы проверки теории относительности.
Многообещающи в этом смысле результаты, достигнутые в исследовании элементарных частиц. Весьма вероятно, что в течение последующих пяти или десяти лет мы окажемся свидетелями выдающихся успехов: частичное объединение теорий слабых и электромагнитных взаимодействий, осуществленное Саламом и Вайнбергом, указывает, что какое-то движение происходит, и происходит оно в правильном направлении.
8. Сверхтекучесть
Газ гелий
Впервые газ гелий был обнаружен на Солнце с помощью спектроскопии, и его название происходит от греческого слова helios (Солнце). на Земле гелий добывается из некоторых месторождений метана и используется в основном для наполнения дирижаблей, поскольку он, как и водород, легче воздуха и в отличие от него не горит. Будь это единственным отличительным свойством гелия, он мог бы всего лишь возбудить любопытство, не заслужив особого интереса. Однако с точки зрения физиков гелий обладает свойствами исключительными и важными.
Любой газ при охлаждении сначала превращается в жидкость, затем при дальнейшем охлаждении затвердевает. Гелий же в твердое состояние не переходит; жидким он становится при температуре, равной примерно четырем градусам выше абсолютного нуля (–269°С), т.е. при четырех градусах Кельвина (4 К), и дальше, сколько его ни охлаждать, он остается жидкостью. Почему же гелий так себя ведет?
Атомы газа можно сравнить с множеством шариков, испытывающих слабое взаимное притяжение, пока расстояния между ними больше определенной минимальной величины; при приближении друг к другу на это минимальное расстояние атомы начинают себя вести, как жесткие шары, и дальнейшее их взаимное сближение становится невозможным. Если бы атомы могли свободно следовать силам взаимного притяжения, то расстояния между ними сокращались до некоторого минимального значения, при котором атомы, объединившись, образовали компактную структуру (твердый кристалл), в котором они были бы расположены вдоль упорядоченных линий. Это происходит при охлаждении жидкости, когда атомы лишаются своей энергии и движение их замедляется.
Атомы гелия подобны атомам других так называемых благородных газов (неон, аргон, криптон, ксенон), которые имеют абсолютно сферическую форму, испытывают слабое притяжение и практически не способны образовать химические связи. Кроме того, атомы гелия в пять раз легче атомов неона, остальные благородные газы еще тяжелее неона. Ядро гелия состоит всего из двух нейтронов и двух протонов, в то время как ядра атомов неона состоят из двадцати нейтронов и протонов.
Роль соотношения неопределенности
Поле силы, создаваемое атомом, можно сравнить со рвом, окружающим его, а сам атом – с тонкой, чрезвычайно высокой скалой, возвышающейся в центре. в этой аналогии потенциальная энергия в какой-то точке – это просто ее высота над окружающей равниной. Следовательно, ров соответствует отрицательной энергии (притяжение), в то время как скала соответствует энергии положительной (отталкивание). Другой, соседний, атом похож на шарик, который может катиться вниз по подножию скалы, пока не остановится в самой низкой точке (минимальная энергия). Каждый атом «перекатывается» в поле других, пока не остановится в точке, соответствующей наименьшей энергии. Но действительно ли останавливается атом? Если бы мы говорили о макроскопических шариках, сомнений не было бы: потеряв свою энергию, шарик остановится.
Атомы гелия, однако, имеют очень небольшую массу та, из-за чего вступает в силу соотношение неопределенности Гейзенберга.
Это соотношение ограничивает точность, с которой можно измерить положение или скорость частицы. Оно утверждает, что:
(Ошибка в скорости) × (Ошибка в положении) ≥ h / m
(h представляет собой универсальную постоянную Планка, появляющуюся в квантовой теории: h = 6,626·10–27 эрг·с; как уже было сказано, она выражает, например, пропорциональность между энергией фотона E и его частотой ν: E = hν).
Следовательно, если мы говорим, что атом остановился на дне рва, да еще точно задаем его положение, то тем самым констатируем неопределенность его скорости. При большой величине m еще можно обойти возникшую трудность, отказавшись от точного задания положения атома и уменьшив таким образом его скорость. Если же, однако, масса от мала, как в случае атома гелия, то попытки ограничить его местонахождение областью притяжения в конце концов придадут атому достаточную скорость и, следовательно, энергию, чтобы из этой самой зоны выйти.
Сверхтекучесть
По этой причине решетка атомов гелия не образуется, и он не затвердевает, если только не заставить атомы проделать это насильно, сжав гелий до давления 25 атм. и более. При охлаждении гелий превращается в жидкость, а при дальнейшем понижении температуры наблюдается поразительное явление – переход к сверхтекучему состоянию, не имеющему аналогов ни в одной другой системе, за исключением, быть может, ядерной жидкости в нейтронных звездах да еще сверхпроводников. Переход от нормального состояния к состоянию «сверхжидкости» представляет собой исключительное зрелище.
Нормально жидкий гелий непрерывно поглощает тепло от стенок сосуда, в котором находится; при этом он бурно кипит, как вода в кастрюле. При достижении так называемой λ-точки, т.е. 2,17 градусов Кельвина, гелий вдруг перестает кипеть, хотя и продолжает интенсивно испаряться. Дальше такая жидкость может течь без видимых следов вязкости (отсюда и название – сверхтекучесть), проходя беспрепятственно через очень маленькие отверстия и капилляры. Что же происходит в λ-точке? Мы попытаемся дать доступный ответ на этот вопрос.
Статистика Бозе-Эйнштейна
Вспомним, что элементарные частицы делятся на две большие категории, на фермионы и бозоны. Электрон и нуклоны относятся к первым, а фотон и пионы – ко вторым. Соединяя вместе два фермиона, мы получим бозон, один бозон и один фермион дадут фермион, и, наконец, объединив два бозона, мы получим бозон. Другими словами, если считать фермионы «нечетными», а бозоны «четными» и рассматривать объединенные частицы, как сумму фермионов и бозонов, то мы как раз получим описанные правила, из которых, кстати, следует, что атом гелия представляет собой бозон. Действительно, он содержит два электрона, два протона и два нейтрона. Говорят также, что бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – статистике Ферми-Дирака; в основе этих утверждений лежит следующий эмпирический факт.
Мы знаем, что все частицы определенного сорта (например, электроны) абсолютно неразличимы; поменяв два электрона местами, мы получим физическое состояние, которое не только практически не отличается от начального, но даже считается совпадающим с ним. Это утверждение справедливо как для бозонов, так и для фермионов. Фермионы еще подчиняются принципу исключения Паули, запрещающему двум одинаковым фермионам находиться в одном и том же состоянии.
Возвращаясь к бозонам, мы видим, что правила статистики (например, то, что состояния, отличающиеся обменом двух или более одинаковых бозонов, считаются одинаковыми) приводят к любопытным последствиям. Представим, что мы имеем два бозона а и В, и рассмотрим два разных состояния, обозначенные скобками. Мы можем помещать свои бозоны в то или иное состояние (скобки). Итак, запись (А) (В) указывает, что в первом состоянии находится бозон А, а во втором – В. Можно составить следующие четыре разные комбинации: (АВ) (), (А) (В), (В) (А), () (АВ). Если, однако, частицы а и в одинаковы, то две средние комбинации неразличимы, и мы получим всего три возможных состояния. Мы видим, что доля случаев, когда одинаковые частицы находятся вместе, увеличилась с одной второй до двух третей. Это, кажется, мало, но при переходе к очень большому количеству частиц выигрыш увеличивается и благоприятствует собиранию одинаковых бозонов в одном состоянии, что в некотором смысле противоположно принципу исключения Паули.