Текст на рисунке 26.6
Поскольку Стивен Хокинг твердо верит, что голые сингулярности — ересь и что они должны быть запрещены законами классической физики, и поскольку Джон Прескилл и Кип Торн считают голые сингулярности квантовыми гравитационными объектами, которые могут существовать, неприкрытые горизонтами, открытые взорам всей Вселенной, Хокинг предлагает, а Прескилл и Торн принимают пари со ставкой 100 фунтов стерлингов против 50 фунтов стерлингов на то, что если к любому типу классического вещества или поля, неспособному быть сингулярным в плоском пространстве — времени, применить общую теорию относительности посредством классических уравнений Эйнштейна, результатом никогда не будет голая сингулярность.
Проигравший вознаграждает победившего одеждой, дабы прикрыть его наготу. Одежда должна быть украшена соответствующей надписью, выражающей признание правоты победителя.
Стивен У. Хокинг Джон П. Прескилл и Кип С. Торн Пасадена, Калифорния, 24 сентября 1991 года
Приписка от руки: Признаю техническое поражение. 5 февраля 1997 г. Стивен У. Хокинг
Никто из нас не думал, что спор разрешится так быстро. Всего через пять лет Мэттью Чоптюк, докторант Техасского университета, прогнал на суперкомпьютере моделирование, которое, как он надеялся, выявит новые, неожиданные свойства законов физики, — и попал в яблочко. Он моделировал схлопывание гравитационной волны[83]. Если волна была слаба, то она схлопывалась и затем рассеивалась. Если сильна, то схлопывалась и образовывала черную дыру. Но когда сила волны была очень тонко «настроена» на промежуточное значение, волна вызывала нечто вроде кипения пространства и времени. Это кипение порождало исходящие гравитационные волны все меньшей и меньшей длины. И в конце концов там образовывалась бесконечно малая голая сингулярность (рис. 26.7).
Рис. 26.7. Слева: Мэттью Чоптюк. В центре (a): схлопывающаяся гравитационная волна. Справа (b): кипение, вызванное волной, и голая сингулярность в центре увеличительного стекла
Рис. 26.8. Хокинг официально признает победу Прескилла и Торна во время своей лекции в Калтехе, 1997
Впрочем, такая сингулярность не может возникнуть сама собой — необходимые для этого условия несвойственны естественным процессам. Однако сверхразвитая цивилизация могла бы, тонко отрегулировав схлопывание волны, создать такую сингулярность искусственно, а затем «выпытать» у нее законы квантовой гравитации.
Ознакомившись с моделированием Чоптюка, Стивен признал, как он выразился, «техническое поражение» (см. рис. 26.6). Он счел тонкую настройку волны жульничеством. Стивен хотел знать, могут ли голые сингулярности возникать естественным путем, так что мы возобновили наше пари в новой формулировке: сингулярность должна появляться без необходимости тонкой настройки. Тем не менее публичное заявление Стивена (рис. 26.8) было большим событием, и о нем даже написали на первой странице «Нью-Йорк Таймс».
Несмотря на все пари, я сомневаюсь, что во Вселенной существуют голые сингулярности. В «Интерстеллар» доктор Манн твердо уверен, что «законы природы не допустят голой сингулярности», да и профессор Брэнд ни разу о такой возможности не упоминает. Вместо этого профессор обращает все свое внимание на сингулярности внутри черных дыр. В них, считает профессор, единственная надежда на познание законов квантовой гравитации.
Во времена Уилера (1960-е) мы думали, что сингулярность черной дыры похожа на сужение пространства в точку, где материя сгущается, пока не становится бесконечно плотной и не исчезает. И я, вплоть до этого момента, изображал в книге сингулярность черной дыры именно так (см., например, рис. 26.9).
Рис. 26.9. Фантасмагорическое изображение нескольких черных дыр с сингулярностями на их сужающихся концах (Фрагмент рисунка 4.5.)
С тех пор математические вычисления по законам теории относительности показали, что такие сужающиеся сингулярности нестабильны. Чтобы создать такую сингулярность внутри черной дыры, потребуется тонкая настройка. И если что-нибудь сингулярность хотя бы слегка потревожит, например если что-то упадет в черную дыру, она разительно изменится. Чем же она станет?
В 1971 году три российских физика — Владимир Белинский, Исаак Халатников и Евгений Лифшиц — предложили ответ на этот вопрос в виде пространных и сложных вычислений. А в 2000-х годах благодаря развитию компьютерного моделирования их ответ подтвердил Дэвид Гарфинкль из Оклендского университета. Эти стабильные сингулярности теперь называют БХЛ — в честь Белинского — Халатникова — Лифшица.
БХЛ-сингулярности хаотичны. Исключительно хаотичны. И опасны. Дьявольски опасны.
На рис. 26.10 я изобразил искривление пространства снаружи и внутри быстровращающейся черной дыры. Внизу находится БХЛ-сингулярность. Если вы упадете в черную дыру, сначала у нее внутри все будет спокойно, быть может, даже приятно. Но по мере приближения к сингулярности пространство вокруг вас начнет хаотически растягиваться и сжиматься. И приливные силы начнут — хаотически же — растягивать и сжимать вас. Сначала растяжения и сжатия будут небольшими, но вскоре они усилятся и, наконец, станут сверхсильными. Вашу плоть растерзает в клочья. А затем и атомы, из которых состояло ваше тело, изуродует так, что родная мать не узнает.
Все это, включая хаотичность, следует из законов теории относительности. Именно это предсказали российские физики Б., X. и Л. Чего они не могли предсказать и чего не может предсказать никто по сей день, так это какая судьба ожидает ваши угодившие в БХЛ-сингулярность атомы и субатомные частицы, когда мильон хаотических терзаний перейдут в бесконечное крещендо. Судьба ваших атомарных останков ведома лишь законам квантовой гравитации. Так или иначе, вы сами будете давно уже мертвы, без шансов добыть какие-либо квантовые данные и спастись.
Я пометил этот раздел значком (ОП) (обоснованное предположение), поскольку у нас нет полной уверенности, какие именно сингулярности скрываются внутри черных дыр — БХЛ или нет. Законы теории относительности допускают существование БХЛ-сингулярностей, Гарфинкль подтвердил это с помощью компьютерного моделирования. Но чтобы подтвердить, что характерные для БХЛ-сингулярностей чудовищные растяжения и сжатия действительно происходят в черных дырах, необходимо более сложное моделирование. Я почти уверен, что в результате такого моделирования станет ясно: да, так все и есть. Но не могу утверждать это наверняка.
Рис. 26.10. Искривленное пространство вокруг быстровращающейся черной дыры наподобие Гаргантюа с БХЛ-сингулярностью внизу. Хаотические растяжения и сжатия вблизи сингулярности изображены не точно, а умозрительно
Падающие и вылетающие сингулярности
В восьмидесятых годах мы с моими коллегами-физиками были вполне уверены (в рамках обоснованного предположения), что в черной дыре находится всего одна сингулярность и что это БХЛ-сингулярность. Мы ошибались.
В 1991 году Эрик Пуассон и Вернер Израэль из Альбертского университета в Канаде, работая с математическим аппаратом теории относительности, обнаружили вторую сингулярность — сингулярность, растущую по мере того, как стареет черная дыра, и порожденную экстремальным замедлением времени внутри дыры.
Если вы упадете во вращающуюся черную дыру наподобие Гаргантюа, вслед за вами неизбежно упадет еще много чего: газ, пыль, свет, гравитационные волны и т. д. Для меня, стороннего наблюдателя, все это будет опускаться в дыру в течение миллионов или миллиардов лет. Но на ваш взгляд, взгляд изнутри дыры, это займет несколько секунд, а то и меньше — из-за экстремального (по сравнению с моим) замедления вашего времени. Относительно вас то, что попадет в дыру за вами следом, образует тонкий слой и будет падать внутрь, прямо к вам, со световой или околосветовой скоростью. Этот слой будет порождать внушительные приливные силы, искажающие пространство, и если он столкнется с вами, вам тоже достанется.
Эти приливные силы будут расти до бесконечности, порождая «падающую сингулярность» (рис. 26.11)[84], подчиняющуюся законам квантовой гравитации. Однако, как выяснили Пуассон и Израэль, приливные силы растут так стремительно, что если вы с ними встретитесь, они деформируют вас лишь в некоторой конечной степени — а затем вы достигнете сингулярности. Это объясняет график на рис. 26.12, где показано ваше общее растяжение вдоль направления верх — низ и сжатие в направлениях север — юг и восток — запад в зависимости от времени. Когда вы встретитесь с сингулярностью, ваши общие растяжение и сжатие будут конечны, но скорости, с которыми вас растягивает и сжимает (крутизна трех кривых), будут бесконечны. Это действие бесконечных приливных сил, признака сингулярности.