000 лет космического расширения, чтобы плотность энергии фотонов упала ниже плотности материальных частиц — и так мы унаследовали Вселенную, в которой преобладает материя.
Время ≈ 1013 с — 4 ∙ 105 лет, температура ≈ 3 ∙ 103 К
Эта эпоха следует сразу за рекомбинацией электронов и атомных ядер с образованием атомов без суммарного заряда. Подробные данные о космическом микроволновом фоне позволили космологам- наблюдателям рассчитать время наступления этой эпохи (380 000 лет после Большого взрыва), ее температуру (3000 К) и то, во сколько раз с тех пор расширилась Вселенная (1100). Слабое микроволновое свечение, распространенное по всей небесной сфере, ученые интерпретируют как «поверхность последнего рассеивания» от первичной плазмы, которая как раз в тот миг нейтрализовалась и стала прозрачной для фотонов. Разумная аналогия — видимая поверхность Солнца: мы не можем заглянуть сквозь нее в более глубокие слои солнечной плазмы, и остается довольствоваться тем, что мы видим поверхность ее последнего рассеивания, где плотность снизилась в достаточной мере для того, чтобы высвободились фотоны. Точно так же космический микроволновый фон считается свидетельством того переломного момента, когда электроны обрели возможность связываться с атомными ядрами и тем самым образовывать нейтральные атомы. Плазмы, с которой взаимодействовали фотоны, пронизывающие космический простор, больше не существовало, и теперь они могли распространяться сквозь пространство и время — чтобы через 13,8 млрд лет попасть на наши детекторы.
Теория Большого взрыва объясняет очень многое из того, что астрономы узнали о Вселенной, в том числе:
1. Космическое расширение. «Обратная перемотка» этого расширения к началу приведет нас в космос, который был намного плотнее и горячее нынешнего. Наиболее точные оценки возраста расширения составляют около 13,8 млрд лет.
2. Парадокс Ольберса. Причина темного облика ночного неба заключается в том, что возраст Вселенной конечен. Свет от чего-либо за пределами соответствующего аберрационного времени в 13,8 млрд световых лет до нас еще не дошел.
3. Содержание элементов в космосе. Наблюдаемая относительная распространенность водорода, дейтерия, гелия-3, гелия-4 и лития-7 соответствует рассчитанному результату нуклеосинтеза, проходившего в первые двадцать минут после Большого взрыва.
4. Космический микроволновый фон. Это свечение всего неба понимается как излучение, испущенное Вселенной в то время, когда она только остывала и переходила из состояния ионизированной плазмы в нейтральное атомное состояние. Это происходило примерно через 380 000 лет после Большого взрыва.
Сама по себе теория Большого взрыва не может объяснить необычайную плоскостность, изотропность и однородность Вселенной, на которые нам указывает характер космического микроволнового фона. И здесь на сцену выходит эпоха инфляции. Резко увеличив пылинку пространства-времени на самой ранней стадии возникновения Вселенной, космическая инфляция сгладила и вещество, и излучение, которым предстояло эволюционировать в нашу сегодняшнюю Вселенную. Она еще не подтверждена экспериментально, но многие астрофизики полагают, что эту проблему решат будущие измерения поляризации волн в космическом микроволновом фоне.
Эта глава заканчивается эпохой атома, когда Вселенная состояла из нейтральных атомов и потока видимых фотонов, а ее температура составляла около 3000 К. Однако не стоит пренебрегать вечно таинственной темной материей и темной энергией. И более того, возникает впечатление, что формирование галактик, а также галактических скоплений и сверхскоплений из крошечных сверхплотностей, проявленных в космическом микроволновом фоне, особенно зависит от расположения темной материи. В следующей главе, посвященной образованию галактик, мы поговорим о ее гравитирующей роли, а также обсудим еще несколько важных вопросов.
10. Возникновение галактик
В любом хаосе есть космос и в любом беспорядке — скрытый порядок.
Карл Юнг. Современный человек в поисках души
Сложности, связанные с формированием галактик, проявляются уже в крошечных флуктуациях, заметных в космическом микроволновом фоне. Если интерпретировать их как избыточную или недостаточную плотность вещества, составляющую всего несколько частей на 100 000, то как эти намеки на структуру могли появиться в гораздо более плотных галактиках, скоплениях галактик и сверхскоплениях, населяющих сегодняшнюю Вселенную? Кроме того, расширение должно было произойти очень стремительно. Изображение небольшой области в созвездии Большой Медведицы, полученное при помощи телескопа «Хаббл», и сверхчеткие снимки, сделанные в дальнейшем, позволили выявить галактики с красным смещением 5 и более — а это значит, что они сформировались по прошествии менее чем миллиарда лет после Большого взрыва. Как столь резкое сгущение вещества могло произойти так быстро?
К сожалению, нам еще только предстоит построить телескопы, мощности которых хватило бы для исследования так называемых Темных веков — эпохи, которая началась спустя 400 000 лет после Большого взрыва и завершилась по прошествии миллиарда лет после него. Снимки, сделанные «Хабблом», позволили нам мельком заглянуть в эту черную бездну и предположить, что первые галактики были относительно маленькими и причудливыми — и безудержно рождали новые звезды. Этот «наблюдательный тупик» слегка разрешится в следующем десятилетии, когда мы задействуем космический телескоп «Джеймс Уэбб» (наблюдающий в ИК-диапазоне), радиоинтерферометр SKA (наблюдающий в радиодиапазоне) и другие передовые телескопы.
За последнее десятилетие команды астрофизиков, создающие численные модели, добились огромных успехов. Используя самые мощные суперкомпьютеры, многочисленные группы ученых воображали самые разные сценарии, пытаясь понять, как из расширяющегося и остывающего «бульона» темной материи и атомов возникли галактики (рис. 10.1). Как правило, эти сценарии начинаются с темной материи, поскольку под воздействием притяжения она могла начать сливаться в единое целое еще до эпохи рекомбинации. В то время обычное вещество по-прежнему пребывало в состоянии ионизированной плазмы, и поэтому стремительные потоки фотонов, продолжавшие с ней взаимодействовать, не давали ему застыть. Напротив, темная материя, не испытывавшая никаких влияний, могла пойти своим путем и гравитационно откликаться на любые первичные флуктуации, которые в это время распространялись по космосу. Предполагаемое сгущение темной материи в огромные кластеры и нити могло бы подготовить декорации для появления космической паутины, а также для формирования галактик внутри ее прядей и узлов.
Рис. 10.1. Графическое представление эволюционирующей Вселенной, включая Темные века, эпоху формирования галактик, реионизацию и последующие преобразования в текущую эпоху. (Материалы любезно предоставлены NASA.)
Как только Вселенная остыла настолько, что электроны смогли воссоединиться (рекомбинировать) с ионами и тем самым сформировать нейтральные атомы, фотоны утратили способность взаимодействовать с обычным веществом. Атомы водорода, гелия и других легких изотопов, получив свободу, устремились к центрам притяжения, впервые установленным темной материей. Еще в конце XX века теоретики говорили о том, что после рекомбинации плотность окружающей среды и температура Вселенной должны были оказаться наиболее благоприятными для возникновения относительно небольших сгустков протяженностью в несколько сотен световых