малой массивности они целы, не гнутся от тяжести, которой нет. Для более правильной формы им полезно придать слабое вращение вместе с камерой, с которой зеркало составляет одно целое.
Такими приборами, в связи с давлением и катализаторами, пользуются для завершения каких-либо химических процессов, требующих определенной температуры. Последнюю легко регулировать величиною поверхности зеркала и разного рода заслонами. Если требуется еще и определенное давление, то отверстие приходится плотно закрывать прозрачным для лучей заслоном. Но теми же камерами можно пользоваться для нагревания готовых сплавов с целью их отливки, прессования и кования — для придания желаемых форм.
Теперь обратимся к механическому воздействию для обработки холодных или подогретых, твердых и полутвердых материалов. Мы уже говорили о простоте устройства моторов, каждый м2 поверхности которых дает одну силу. Для получения ее, конечно, можно применять и зеркала, и химические процессы. Значит, механической энергии сколько угодно. (Ее же легко преобразовывать известными способами в электрическую, — если нельзя этого делать непосредственно солнечной радиацией. Электрическая же энергия высокого потенциала, как известно, может давать температуру выше солнечной.)
Будут ли работать машины без тяжести? Опору для них, если бы она была нужна, мы всегда имеем в массивном многокамерном жилище или специальных помещениях. Рассмотрим теперь действие некоторых машин в среде без тяжести.
Уголь и дрова будут вылетать из печи. Если же топки оградить решетками, то мелкие частицы угля будут выскальзывать из топок. Кроме того, тонкая решетка сгорит или расплавится. Дрова и уголь не будут лежать на дне печи, а распространятся по всему ее пространству до самого потолка. Это, пожалуй, терпимо. Естественной тяги не будет и потому необходима искусственная. Отсюда видно, что угольные, дровяные, торфяные и т. п. топки неудобны в среде без тяжести (помимо неимения обширных кислородных атмосфер). Но, во-первых, в обыкновенных топках мы, в эфире, не имеем нужды, во-вторых, если бы и случилась в них надобность, то мы могли бы пустить в дело угольный порошок, жидкое топливо и искусственную тягу. Вообще же в среде, свободной от тяжести, нагревание производится Солнцем, а охлаждение — лучеиспусканием тел.
Мы видели, что в двигателях иногда будут употреблять котлы с жидкостями. Последние не будут занимать нижнюю часть сосуда, потому что низа нет, а распределятся хаотически по всему пространству котла, вперемешку с их парами. Таким образом, вместе с паром будет вырываться и жидкость, что непригодно. Но можно навести порядок в котле, если он будет вращаться или если при его неподвижности, внутри его, будет вращаться жидкость, посредством колеса с лопатками. И то и другое легко осуществимо в среде без тяжести. Тогда жидкость распределится по экватору котла, осевая же часть его будет занята паром…
Представим себе какую-нибудь фабрику. Вертятся колеса, качаются разные стержни, летят стружки, снуют, как рыбы в воде, рабочие. Если вся фабрика вращается, то в ней образуется тяжесть и условия работы будут такие же, как на Земле, немного уклоняясь только, в зависимости от величины искусственной тяжести. Если вращения нет или слабое, то тяжесть почти незаметна. Разного рода отбросы тогда должны собираться в специальные подставочные коробки, воздух постоянно процеживаться от пыли и летающих мелких тел. Магниты могут собирать железные, стальные и чугунные стружки и опилки.
Но во многих производствах (например, прокатное дело, прессовочное) нет отбросов или они безвредны и легко устраняются. Там не надо и искусственной тяжести. Наконец, когда отбросы грозят рабочему, то голова его может быть защищена на всякий случай сеткой или стеклом, а рот особой подушкой. Особая одежда также служит защитой. Да и на Земле разве мы гарантированы от отбросов в виде летающих насекомых и быстро летящих стружек?
Рабочие и инженеры летают среди машин и продуктов и потому могут попасть между колес, рычагов и других движущихся частей и изувечить себя. Но опасные места могут ограждаться сетками. Управление частями машин может быть вне машин, в особом месте. Все это не ново и употребляется давно и на Земле…
Обрабатываемая вещь, в среде без тяжести, как бы велика и массивна ни была, не падает, не кривится, не давит на рабочих и легко поворачивается и переносится во все стороны. Также и рабочие могут делать свое дело во всяком положении и во всяком месте, не боясь свалиться при какой угодно позе (например, вверх ногами по отношению друг к другу). Нужна только опора. Но он ее всегда найдет, сцепив ноги или свой корпус с самим обрабатываемым предметом или со станком. Удобство работы в среде без тяжести выше всяких похвал…
При разного рода работах на Земле не столько пользуются тяжестью, сколько инертностью массивных тел. Молоток работает в среде без тяжести так же хорошо, как и на Земле. Сила его удара не столько зависит от тяжести, сколько от скорости его движения, зависящей от напряжения мускулов и величины размаха.
В машинах еще менее пользуются силою тяжести, чем в ручных работах. Тяжелые молоты успешно заменяются сравнительно легкими прессами. Да и кто нам мешает какою-либо силой придавать массам (в эфире) скорость, которую получают на Земле тела при падении. Все дело в скорости, в ней сила удара. Скорость же гораздо удобнее сообщать телам в среде без тяжести, чем на Земле. Удар от тяжести имеет одно направление — вниз, удар же от скорости — куда угодно. Это преимущество…
Кинутые тела как будто опаснее в среде без тяжести. На Земле они падают на почву и делаются безопасными, в среде же без тяжести они мчатся по прямой линии, пока кого-нибудь не зашибут. Но, с одной стороны, и на планетах предметы, быстро движущиеся, как военные снаряды, долго летят, прежде чем упасть и остановиться, с другой — и бродячие тела в жилищах эфира, встречая их стенки, теряют свою скорость и останавливаются. Опаснее такие тела вне зданий, в эфире. Но, во-первых, не надо производить без надобности эти бродячие тела, во-вторых, и от них можно оградиться, как ограждаются на Земле от пуль и ядер.
Механика в среде без тяжести ничем не отличается от научной механики, исключите только тяжесть…
Тяготение Солнца на расстоянии Земли не очень велико, именно оно в 1800 раз меньше земного, то есть секундное ускорение будет 0,0055 м, или 5,5 мм. Усилие, которое на Земле поднимает на 1 м, тут может поднять почти на две версты. Но из этого не следует, что удаление от Солнца и приближение к нему, при малых относительных скоростях, ограничивается километрами. Дело в том, что тут речь идет об относительных движениях. Брошенное тело, кроме малой