Эта картина падения газа и рентгеновского излучения не давала мне покоя. Я хорошо знал, что если на Земле попытаться удержать плотную жидкость, такую, как жидкая ртуть, с помощью менее плотной жидкости, такой, как вода, находящаяся ниже, то языки ртути в воде быстро проложат себе дорогу, и ртуть моментально проскочет вниз, а вода поднимется наверх (рис. 6.46). Это явление называется неустойчивостью Рэлея — Тейлора. В картине Зельдовича рентгеновские лучи подобны воде, имеющей малую плотность, а падающий газ — плотной ртути. Не «проложат» ли себе дорогу языки газа сквозь рентгеновские лучи, и не будет ли после этого газ свободно падать вдоль этих языков, разрушая саморегулирующийся поток Зельдовича (рис. 6.4а)?
Тщательный расчет, проведенный на основании физических законов, помог бы мне узнать, происходит ли все это в действительности.
6.4. (а) Газ, падающий на нейтронную звезду, замедляется давлением рентгеновского излучения, (б) Пытающаяся упасть в гравитационном поле Земли жидкая ртуть удерживается лежащей ниже водой; в результате проявляется неустойчивость Рэлея — Тейлора, (в) Может ли возникнуть неустойчивость Рэлея-Тейлора и для падающего газа, сдерживаемого рентгеновским излучением нейтронной звезды?
Однако подобный расчет был бы очень сложен и отнял бы много времени, поэтому вместо того чтобы браться за него, я однажды решил поговорить об этом с Зельдовичем, когда мы обсуждали различные вопросы физики на его квартире в Москве, в 1969 г.
Я задал вопрос, Зельдович выглядел немного смущенным, но его ответ был уверенным: «Нет, Кип, это не происходит. В рентгеновских лучах нет языков. Поток газа стабилен». «Откуда вы знаете, Яков Борисович?» — спросил его я. Удивительно, но ответа я добиться не смог. Казалось ясным, что Зельдович (или кто-то еще) проделал детальный расчет или эксперимент, показывающий, что рентгеновское излучение может оказывать давление на газ без образования языков Рэлея — Тейлора, разрушающих это давление. Но Зельдович не мог мне указать на такой расчет или эксперимент, описанный в опубликованной работе, не мог он мне описать и физику происходящего. Как это было для него нехарактерно!
Несколькими месяцами позже я путешествовал с Колгейтом в горах Калифорнии. (Колгейт — один из лучших экспертов в Америке по течению жидкости и излучению, был глубоко вовлечен в американский проект супербомбы на его последнем этапе и был одним из тех трех ливерморских физиков, которые моделировали схлопывание звезд на компьютере.) Когда мы там путешествовали, я поставил перед Колгейтом тот же самый вопрос, который раньше задавал Зельдовичу, и мне был дан тот же самый ответ: поток устойчив; газ не может обойти силы давления рентгеновского излучения образованием языков. «Откуда ты знаешь, Стирлинг?» — спросил я. «Это было показано», — ответил он. «Где я могу найти этот расчет или результаты эксперимента?» — спрашиваю я. «Не знаю»… «Это очень странно, — заявил я Стирлингу, — Зельдович сказал мне в точности то же самое — поток стабилен. Но он, как и ты, не представил мне никаких доказательств». «О! Это очаровательно. Значит, Зельдович действительно знал», — ответил Стирлинг.
И тогда я все понял. Я не хотел знать, но вывод напрашивался сам собой. Идея Теллера — Улама, судя по всему, состояла в использовании рентгеновского излучения, испущенного в первую микросекунду начала распада [атомной бомбы] для того, чтобы помочь сжать и поджечь термоядерное топливо супербомбы (рис. 6.5). То, что это действительно было частью идеи Теллера — Улама, было подтверждено в 1980-х несколькими открытыми публикациями в Америке, иначе я бы об этом здесь не упоминал.
Что заставило Уилера превратиться из скептика по отношению к черным дырам в их сторонника и защитника? Компьютерная модель схлопывающихся звезд стала лишь окончательным подтверждением этого превращения. Гораздо более важным было разрушение ментального барьера. Этот ментальный барьер был распространен в среде физиков-теоретиков с 1920 по 1950-е годы. Частично на него повлияла та самая сингулярность Шварцшильда, перенесенная затем на черные дыры. Частично повлиял и загадочный, кажущийся парадоксальным вывод из упрощенных расчетов Оппенгеймера и Снайдера, состоящий в том, что схлопывающаяся звезда оказывается навсегда замороженной на критической окружности («сингулярность Шварцшильда») с точки зрения покоящегося внешнего наблюдателя, но быстро схлопывается, пройдя через точку замораживания и далее, — при наблюдении с поверхности звезды.
В Москве Ландау и его коллеги, хотя и верили в расчеты Оппенгеймера и Снайдера, столкнулись с серьезными проблемами, пытаясь примирить эти две системы отсчета. «Трудно смириться с тем, насколько тяжело человеческому уму понять, как эти две точки зрения могут быть одновременно правильными», — рассказывал мне несколько лет спустя Евгений Лифшиц — ближайший друг Ландау.
В один из дней 1958 г., года, в котором Уилер атаковал выводы Оппенгеймера и Снайдера, в Москву пришел выпуск Physical Review со статьей Дэвида Финкельштейна — неизвестного постдока из малоизвестного американского университета — Стивенсовского института технологии в Хобокене (Нью-Джерси). Ландау и Лифшиц прочли статью. Это было как откровение. Неожиданно все стало ясно [79].
6.5. Схематический рисунок, показывающий один из аспектов идеи конструкции водородной бомбы Теллера — Улама/Сахарова — Зельдовича: ядерный взрыв (атомная бомба как запал) порождает интенсивное рентгеновское излучение, которое каким-либо образом фокусируется на термоядерном топливе (дейте-риде лития, LiD). Рентгеновское излучение предположительно должно нагреть топливо и помочь сжимать его в течение времени, достаточного для начала реакции теормоядерного синтеза. Технология фокусировки рентгеновских лучей и другие практические проблемы настолько труднопреодолимы, что знание этой доли «секрета» Теллера — Улама составляет бесконечно малый отрезок пути к созданию действующей супербомбы
В том же году Финкельштейн посетил Англию и прочел лекции в Королевском колледже в Лондоне. Роджер Пенроуз (позже он таким же образом изменит наше понимание того, что происходит внутри черной дыры) поездом приехал в Лондон, чтобы послушать лекцию Финкельштейна, и восторженный вернулся в Кембридж.
Уилера в Принстоне идея Финкельштейна сначала заинтриговала, но полностью он ее не принял. Со временем, но лишь постепенно, в ходе исследований через несколько лет он с ней согласится. Уилер все воспринимал медленнее, чем Ландау или Пенроуз и, как мне кажется, потому, что заглядывал глубже. Он был зациклен на предположении о том, что квантовая гравитация может вынуждать нуклоны (нейтроны и протоны) внутри схлопывающейся звезды превращаться в излучение и предотвращать таким образом схлопывание. Казалось, что это представление невозможно совместить с идеей Финкельштейна. Тем не менее, в определенном глубоком смысле и предположение Уилера, и идея Финкельштейна были верны.
* * *
Так в чем же состояла идея Финкельштейна? Финкельштейн довольно случайно открыл укладывающуюся всего в две строчки математических преобразований новую систему отсчета, в которой можно описывать геометрию пространства-времени Шварцшильда. Мотивы исследования у Финкельштейна были другие, и он не провел связи между своей новой системой отсчета и схлопыванием звезд. Однако для других исследователей выводы его новой системы отсчета были ясны: она открыла им совершенно новую перспективу на схлопывающиеся звезды.
Геометрия пространства-времени вне сжимающейся звезды при этом совпадает с геометрией Шварцшильда и, таким образом, схлопывание звезды может быть описано с использованием новой системы отсчета Финкельштейна. Его система существенно отличалась от тех, с которыми мы ранее встречались (главы 1 и 2). Большинство из них (воображаемые лаборатории) были малы, и все составляющие каждой системы отсчета (верх, низ, стороны, середина) покоились друг относительно друга. Напротив, система отсчета Финкельштейна была настолько велика, что одновременно включала области пространства-времени далеко от звезды, области вблизи нее, и все промежуточные области. Еще важнее то, что различные части этой системы отсчета находятся в движении друг относительно друга. Части, расположенные далеко от звезды остаются статичными, т. е. не сжимаются, тогда как части вблизи звезды падают внутрь, вместе с ее поверхностью. Соответственно, система отсчета Финкельштейна могла быть использована для одновременного описания схлопывания звезды, как с точки зрения удаленного покоящегося наблюдателя, так и с точки зрения наблюдателей, падающих внутрь вместе со схлопывающейся звездой. Получающееся описание прекрасно примиряло замораживание схлопывания для удаленного наблюдателя и продолжающееся движение при наблюдении с поверхности звезды.