Эта аналогия призвана донести до нас простые мысли: во-первых, суть постсингулярного человечества никак не связана ни с неким сверхчеловеком, улучшенной модификацией Хомо Сапиенс, снабженной сверхразумом, ни с искусственным сверхинтеллектом. А во-вторых, мы принципиально не обладаем терминологией, понятиями, с помощью которых можно выразить природу постсингулярного мира. Ну как, к примеру, в биологических понятиях описать человеческие науку, искусство, экономику? Кошка, конечно, может запомнить, что еда появляется из холодильника, но по ее биологическому разумению банка консервов – результат «магии», а для нас – продукт обычного производства. Посему мы можем лишь анализировать наши социумные процессы, которые при их логическом продлении в будущее приводят к некому неопределенному состоянию, исключают сами себя в так называемой точке сингулярности.
Один из детальных вариантов проработки темы «сингулярности» предложил российский ученый А. Д. Панов[2] на основе численного анализа сокращения периодов исторического развития, то есть периодов между эволюционными кризисами, или, можно сказать, революциями в истории Земли (анализ был проведен на основе гипотез и данных, ранее полученных историком И. М. Дьяконовым[3] и физиком С. П. Капицей[4]). К таким революциям можно отнести кислородную катастрофу и связанное с ней появление ядерных клеток (эукариот); кембрийский взрыв – быстрое, практически мгновенное по палеонтологическим меркам формирование разнообразных видов многоклеточных, включая позвоночных; моменты появления и вымирания динозавров; зарождение гоминид; неолитическую, городскую революции; начало средневековья; промышленную и информационную революции; крах двухполярной империалистической системы (распад СССР). Панов показал, что перечисленные (и некоторые другие) моменты значительных эволюционных перемен, будучи проставлены на временной оси, однозначно вписываются в график вполне конкретного уравнения, которое имеет сингулярное решение в районе 2027 года. И в данном случае перед нами действительно «сингулярность» в традиционном математическом смысле – число кризисов в этой точке, согласно формуле, становится бесконечным, а промежутки между ними стремятся к нулю, то есть решение уравнения становится неопределенным.
Понятно, что формулу (график) Панова нельзя рассматривать как закон эволюции биосферы и социума. Однако вписанность вполне объективно выделенных кризисно-революционных моментов в математически строгую закономерность демонстрирует, что развитие жизни и цивилизации далеко не случайно. Следовательно, продлевая в будущее закономерность, однозначно проявляющуюся уже на протяжении 4 миллиардов лет, мы можем с большой долей уверенности предсказать судьбу цивилизации – образно говоря, указать точку падения снаряда. Хотя, конечно, отмеченная закономерность не позволяет нам описать грядущий взрыв содержательно, она лишь указывает на его значимость, на глобальность грядущих перемен.
Установив местоположение этой точки преткновения человеческой цивилизации, Панов, как и Виндж, сконцентрировал свое внимание на проблеме преодоления сингулярности, воспринимая ее как последнюю глобальную катастрофу. Но поскольку любая сингулярность есть только и исключительно неопределенное решение некоего математического уравнения, напрашивается вполне логичное заключение: наличие сингулярного решения означает – не больше и не меньше, – что данное уравнение, данная прямая (или кривая) больше не применима для описания какого-либо реального процесса. То есть наличие сингулярного решения свидетельствует только о том, что анализируемая закономерность, имеющееся решение, прежняя логика в сингулярной точке и за ней уже принципиально неприменимы для описания реальных процессов. Ведь даже при однозначных решениях уравнения говорить, что оно описывает какой-то реальный процесс, можно лишь с большой степенью условности – тогда о чем можно говорить, если решение уравнения становится неопределенным (сингулярным)? Только о том, что данное уравнение уж точно не имеет никакого отношения не только к процессу, но и к реальности вообще. То есть сингулярность – это всегда из области математики, а не реальности.
Последнее суждение подтверждают и исследования роста народонаселения планеты, проведенные С. П. Капицей. Выявленная закономерность (формула) этого процесса, вполне адекватно описывала этот рост на протяжении всей истории вида Homo Sapiens (несколько миллионов лет) и предсказывала в районе 2007 года бесконечный демографический взрыв. Но он не произошел. То есть сингулярное решение указало не на катастрофу, а на неизбежную смену закономерности, на изменение реальности, на невозможность использования для ее описания ранее принятого уравнения.
Следовательно, наличие сингулярного решения, безусловно, говорит нечто новое и о реальности, но не о ее гибели, а о ее изменении. И не о простом изменении, а принципиальном. Сингулярность указывает на то, что в реальности должен появиться новый феномен, новый процесс, для описания которого необходима другая логика. Ну а если в одной временной области совпадает множество сингулярных решений, это означает, что должно появиться нечто существенно новое, принципиально новая реальность, новый эволюционный этап. По масштабу новационных изменений грядущий сингулярный переход, наверное, следует сравнивать с событиями появления жизни и человека разумного, то есть формирования биосферы и цивилизации.
Исходя из такой логики, можно заключить, что этот переход не будет катастрофическим, поскольку он связан не с разрушением структур текущей эволюционной системы, а с формированием нового уровня. Так, в свое время, формирование социумной системы не было связано с катастрофическим разрушением биологического уровня, нарушением его целостности (хотя, конечно, и были кризисные моменты).
Из всего сказанного становится ясно, что говорить о будущем дело сложное (если не безнадежное). И наверное, лучший способ понять, что нас ждет в постсингулярном будущем – это попытаться проанализировать прошлые и современные процессы в человеческой цивилизации, которые закономерно подводят ее к некой неопределенности – с разных сторон, но согласованно двигают социум к сингулярности. Хотелось бы показать, что грядущая сингулярность является не «механическим» следствием развития технологий (на что указывал Виндж), а закономерным событием в истории социосистемы. Последующие рассуждения представляют собой попытку наполнить содержанием – экономическим, политическим, философским – пока лишь формально математически предсказанный сингулярный момент в истории планеты.
К экономической сингулярности
Экономика как социумное явление возникла в момент отрыва друг от друга двух процессов: производства и потребления. Именно разнесение во времени и пространстве ранее совмещенных биологических актов добычи и употребления пищи породило целую систему небиологических производственно-финансовых отношений, основным смыслом которых является устранение рассогласования между разрозненными актами производства и потребления, создание системы их сбалансированного взаимодействия.
Для понимания логики последующих рассуждений важно отметить неразрывную связь финансово-экономической системы с научно-техническим прогрессом. И эта связь двухсторонняя: чисто экономические потребности стимулировали развитие средств коммуникации, а появление новых средств пространственного взаимодействия внутри социума (транспорт, радио, компьютерные сети), в свою очередь, приводило к дальнейшему прогрессу в финансово-экономической системе.
А теперь перескочим сразу к завершающему этапу развития экономической системы человеческой цивилизации (если, конечно, предположить возможность такового – хотя в разговоре о сингулярности это естественно). Зададимся вопросом: как можно представить логичный, закономерный финал развития экономических структур?
Исходя из принятого выше понимания сути и функции финансово-экономических отношений, можно сделать само собой разумеющийся вывод: они потеряют свое значение при абсолютном согласовании сфер производства и потребления. То есть финансово-экономическая составляющая социума утратит всякий смысл, когда каждый акт потребления будет максимально приближен по времени к акту производства, то есть производство конкретного единичного продукта будет стимулироваться не опосредованным статистическим фактором рынка потребления, а заказом конкретного потребителя. Что для этого необходимо? (Естественно, оставим в стороне элементарное решение на уровне возврата к натуральному хозяйству.)