Возьмем на себя смелость рассмотреть хаос подробнее. До сих пор мы пытались приблизиться к хаосу с помощью интуитивно понятных примеров, однако понять, что же происходит на самом деле, совсем не просто. В научно-популярных книгах и даже в учебниках объяснения начинаются с числовых примеров, и только потом автор приводит примеры из геометрии и топологии.
Мы же решили действовать противоположным образом: во-первых, именно так исторически изучался хаос, во-вторых, так читатель сможет лучше понять, как и математики постепенно понимали, что такое хаос, — сначала с качественной, а затем с количественной точки зрения. У вас кружится голова от непонятных слов? Не беспокойтесь, математики прошлого чувствовали себя точно так же.
И соленоид, и подкова Смэйла — это примеры отображений, геометрических преобразований, в которых проявляется хаос. Преобразование, порождающее подкову Смэйла (обозначим его через f), очень простое. Чтобы выполнить его, рассмотрим квадрат или любую другую фигуру похожей формы. Сначала расположим квадрат на плоскости, растянем его, затем сложим пополам в форме подковы и уложим в границы, определенные краями исходной фигуры. Если мы будем повторять преобразование f снова и снова бесконечное число раз, то получим сложную и запутанную многослойную структуру, и возникнет хаос. На первой итерации исходный квадрат превратится в подкову в форме буквы U, как показано на следующем рисунке. На второй итерации подкова превратится в другую подкову, состоящую из трех кривых в форме буквы U. На третьей итерации мы получим уже семь кривых той же формы, и так далее. В пределе имеем бесконечно запутанную кривую, очень похожую на гомоклиническую сеть, которая приводила в ужас Пуанкаре. И действительно, в растяжении и складывании заключен геометрический смысл хаоса.
Последовательные итерации при построении подковы Смэйла. Они заключаются в растяжении и складывании кривой в форме буквы U в границах исходной фигуры.
Последовательно выполняемые операции растяжения и складывания, характерные для подковы Смэйла, — верный признак хаоса. Следовательно, эти же операции вы встретите во многих хаотических отображениях. В качестве примера можно привести «отображение пекаря», названное так за сходство с операциями, выполняемыми при замешивании теста, или «отображение кота Арнольда», определенное В. И. Арнольдом (о нем мы расскажем позже), которое заключается в последовательном растяжении и складывании изображения головы кота. Но мы не будем растягивать и складывать голову кота, вместо этого используем более привлекательное изображение — фотографию модели Лины Седерберг, мисс Ноябрь журнала «Плейбой» 1972 года. С 1970-х годов фрагмент ее фотографии используется в качестве тестового изображения в алгоритмах сжатия изображений и, по сути, является стандартом в науке и технике. (И кто-то еще осмеливается заявлять, что математики — скучные люди!) Между прочим, номер «Плейбоя» с этой фотографией стал самым продаваемым за всю историю журнала.
Если мы несколько раз применим отображение кота Арнольда к этой фотографии, то есть будем последовательно растягивать и складывать ее определенным образом, то заметим, что уже через несколько итераций лицо модели станет неразличимым. Но после определенного числа итераций (а именно 192) лицо модели можно будет увидеть снова. Точнее говоря, можно будет увидеть очень похожее лицо — траектории динамических систем могут совпадать друг с другом, только если являются периодическими, а мы рассматриваем хаотическую орбиту. Тем не менее лицо Лины будет появляться и исчезать бесконечное число раз. Так проявляет себя хаос.
Отображение кота Арнольда на примере фотографии Лины Седерберг. Результатом многократного растяжения и складывания изображения (верхние ряды) будет однородное поле (центральные ряды). Однако на каком-то этапе некоторые точки будут располагаться вблизи исходных положений, и исходное изображение внезапно появится вновь (нижний ряд).
В худшем (или лучшем — с какой стороны посмотреть) случае динамическая система будет хаотической. В этом случае траектории, расположенные близко друг к другу, будут быстро расходиться по мере того, как они будут растягиваться, сжиматься и складываться по мере приближения к аттрактору. Эти преобразования определяют очень странное и сложное поведение, которое следует из теоремы Пуанкаре о возвращении.
В своем труде о новых методах небесной механики ученый сформулировал удивительную теорему: «Для данных уравнений определенной формы и произвольного частного решения любого из этих уравнений всегда можно найти периодическое решение — его период может быть очень большим — такое, что разница между этими решениями будет сколь угодно малой». Портрет Лины демонстрирует теорему Пуанкаре о возвращении: если повторно применять одно и то же преобразование к системе, которая не может выйти за определенные границы, она бесконечное число раз будет возвращаться в состояние, близкое к оригиналу. Иными словами, рано или поздно все вернется на круги своя. Существование периодического решения означает, что если мы проткнули колесо велосипеда, то достаточно подождать, когда оно наполнится воздухом само по себе. Через достаточно долгое время колесо вновь наполнится воздухом — так гласит теорема Пуанкаре. Единственная проблема в том, что ждать придется дольше, чем существует Вселенная.
* * *
ВЫ, КОНЕЧНО, ШУТИТЕ, МИСТЕР ФЕЙНМАН?
Ричард Филлипс Фейнман (1918–1988), эксцентричный американский физик, был удостоен Нобелевской премии по физике 1965 года за вклад в квантовую электродинамику. В число его хобби входил гипноз, посещение топлесс-баров и взлом сейфов. В своих популярных «Фейнмановских лекциях по физике» он приводит несколько примеров, при виде которых возникает вопрос: вы, конечно, знакомы с теорией хаоса, мистер Фейнман?
В разделе «Немного философии» главы 38 первого тома «Лекций…», опубликованном в 1965 году, Фейнман описывает, насколько классическая механика проникнута духом недетерминизма, который с практической точки зрения есть следствие неточности при определении начальных условий некоторых физических систем. Если бы мы знали положение и скорость всех частиц в мире, то смогли бы предсказать, что произойдет в будущем. Предположим, что нам неизвестно точное положение некоторого атома. Следовательно, после столкновения этого атома с другим ошибка при определении его положения увеличится, с каждым новым столкновением неточность будет нарастать, а по прошествии определенного периода времени величина нашего незнания будет невообразимо велика.
* * *
Математика по другую сторону «железного занавеса»
В это же самое время внутри «железного занавеса» существовала мощная советская школа. Ее представители, многочисленные физики и математики, унаследовали важные результаты, полученные Ляпуновым в ходе исследований устойчивости движения в динамических системах.
Математик и физик Александр Ляпунов (1857–1918), работавший примерно в то же время, что и Пуанкаре, использовал более количественный подход к теории устойчивости. Вместо того чтобы, подобно Пуанкаре, изучать геометрию траекторий, Ляпунов рассмотрел числа — так называемые экспоненты Ляпунова — которые служили индикаторами неустойчивости. Если какая-либо из этих экспонент была положительной, то траектории удалялись друг от друга (экспоненциально). В этом случае система была нестабильной.
В 1950-е годы основной темой семинаров Андрея Колмогорова (1903–1987) в Московском государственном университете была небесная механика: и он, и его ученик Владимир Игоревич Арнольд (1937–2010) занимались теоретическим изучением устойчивости динамических систем небесной механики, взяв за основу труды Пуанкаре и Ляпунова. Результатом этих исследований стала теорема, представленная Колмогоровым в 1954 году на Международном математическом конгрессе в Амстердаме.