MyBooks.club
Все категории

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.. Жанр: Математика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Дата добавления:
17 сентябрь 2020
Количество просмотров:
133
Читать онлайн
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - описание и краткое содержание, автор Хофштадтер Даглас Р., читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Хофштадтер Даглас Р.
Трудность отделения символов друг от друга

Эти этапы роста и отделения примера от класса можно различить по тому, как связаны между собой задействованные символы. Без сомнения, иногда будет очень трудно с уверенностью сказать, где начинается один символ и где кончается другой. Насколько «активен» какой-либо символ по сравнению с другим? Если они могут быть возбуждены отдельно друг от друга, то мы по праву можем называть их независимыми.

 Выше мы использовали метафору из области астрономии. Интересно то, что проблема движения планет весьма сложна; в действительности, общая проблема трех гравитационно взаимодействующих тел, таких, например, как Земля, Луна и Солнце, все еще не разрешена, даже после нескольких столетий поиска. Однако можно получить довольно точное приближение результата, когда одно из тел гораздо массивнее других (в нашем примере это Солнце). Тогда имеет смысл считать это тело неподвижным, а два других — вращающимися вокруг него; после этого можно учесть взаимодействие двух спутников между собой. Это приближение требует разбивания системы две части: Солнце и некий «блок» — систему Земля-Луна. Это, разумеется, только приближение, но оно помогает нам намного глубже понять всю систему. Так до какой же степени этот блок — часть реальности, и до какой степени он — измышление человеческого разума, наложение людьми определенной схемы на вселенную? Проблема «реальности» границ между «автономными» и «полуавтономными» блоками, как мы их воспринимаем, доставит нам немало забот, когда мы попытаемся соотнести эти понятия с символами в мозгу.

Весьма затруднительным вопросом, например, является вопрос о множественном числе. Как мы себе представляем, скажем, трех собак в чайной чашке? Или нескольких человек в лифте? Начинаем ли мы с символа-класса «собака» и затем снимаем с него три «копии»? Иными словами, используем ли мы символ «собака» как форму для отливки трех свежих символов-примеров? Или же мы одновременно активируем символы «собака» и «три»? Чем больше деталей мы добавляем к воображаемой сцене, тем менее приемлемыми кажутся обе эти теории. Скажем, у нас нет отдельного символа-примера для всех носов, усов или крупинок соли, которые мы когда-либо видели. Для таких множественных объектов мы пользуемся классами-символами; когда на улице мимо нас проходят люди с усами, мы активируем лишь класс-символ «усы», обычно не создавая при этом новых индивидуальных символов.

С другой стороны, как только мы начинаем различать людей, мы уже не можем опираться на общий символ-класс «человек». Очевидно, что необходимы отдельные символы-примеры для каждого отдельного человека. Смешно было бы воображать, что это может быть достигнуто путем «жонглирования» единственным символом, перебрасывая его между различными способами активации (по способу на каждого нового человека).

Между крайностями должно быть место для многих промежуточных случаев. Возможно, что в мозгу есть целая иерархия путей различения между классами и примерами, иерархия, порождающая символы — и организации символов — различной степени специфичности:

(1) несколько различных типов и степеней интенсивности активации символов-классов;

(2) одновременная согласованная активация нескольких символов-классов;

(3) активация одного символа-класса;

(4) активация одного символа-примера одновременно с активацией нескольких символов-классов;

(5) одновременная согласованная активация нескольких символов-примеров и символов-классов.

Это снова приводит нас к вопросу «когда символ является различимой подсистемой мозга?» Посмотрим, скажем, на второй пример — одновременная согласованная активация нескольких символов-классов. Вполне возможно, что именно это и происходит, когда мы рассматриваем понятие «соната для фортепиано» (при этом активируются по-крайней мере два символа: «фортепиано» и «соната»). Но если эта пара символов активируется вместе достаточно часто, то разумно предположить, что рано или поздно между ними установится такая тесная связь, что они начнут действовать как некая единица каждый раз, когда они активированы соответствующим образом. Таким образом, в соответствующих условиях два или более символов могут действовать как один — а это значит, что проблема подсчета символов в мозгу еще сложнее, чем нам казалось.

При некоторых условиях два ранее не связанных символа могут одновременно активироваться координированным путем. При этом они могут так подойти друг другу, что образуется новый символ, тесно связующий два прежних. Справедливо ли в таком случае утверждать, что новый символ «всегда был в мозгу, но до сих не был активирован» — или же мы должны сказать, что он только что «создан»?

Если это звучит для вас слишком абстрактно, давайте рассмотрим конкретный пример: Диалог «Крабий канон». При написании этого Диалога два существующих символа — «музыкальный канон-ракоход» и «словесный диалог» — должны были быть активированы одновременно и им пришлось взаимодействовать. Как только это произошло, остальное было почти неизбежно: родился новый символ-класс, который в дальнейшем мог активироваться самостоятельно. Был ли он в моем мозгу всегда, в пассивном состоянии? В таком случае то же должно быть верно для любого человека, в чьем мозгу когда-либо имелись составляющие символы, даже если новый символ-класс никогда не был там активирован. Тогда, чтобы подсчитать количество символов в мозгу любого человека пришлось бы учитывать все пассивные символы — все возможные комбинации и комбинации всех возможных типов активации всех известных символов. Это включало бы даже фантастические создания, которые наш мозг изобретает во время сна — странные смеси идей, которые просыпаются, когда их «хозяин» засыпает… Существование этих «потенциальных символов» показывает, что представлять мозг, как строго определенную коллекцию символов в хорошо определенных состояниях, было бы слишком большим упрощением. Точно охарактеризовать состояние мозга на уровне символов гораздо сложнее.

Символы — программное обеспечение или аппаратура?

Думая о громадном и непрерывно растущем количестве символов в мозгу, вы можете задаться вопросом — а не наступит ли такой момент, когда мозг насытится, и в нем просто не окажется больше места для нового символа? Предположительно, такое могло бы произойти, если бы символы не пересекались и не накладывались бы один на другой — если бы данный нейрон никогда не выступал бы в разных ролях. Тогда символы были бы подобны людям в лифте: «Осторожно. максимальная вместимость 350 275 символов!»

Однако это вовсе не обязательная черта моделей функционирования мозга. На самом деле, пересечение и сложная связь символов между собой скорее являются правилом; вероятно, каждый нейрон, вместо того, чтобы быть членом единственного символа, функционирует, как часть сотен различных символов.

Это звучит немного тревожно — если дело обстоит именно так, почему бы тогда не считать, что каждый нейрон — часть каждого существующего символа? Если так, то символы было бы невозможно локализовать — каждый символ идентифицировался бы с целым мозгом. Это объяснило бы результаты, полученные Лашли при удалении частей коры головного мозга у крыс; однако нам пришлось бы отказаться от нашего первоначального намерения разделить мозг на отдельные физические подсистемы. Наша характеристика символов как «реализации понятий на уровне аппаратуры» оказывалась бы, в лучшем случае, слишком упрощенной. Ведь если бы каждый символ состоял из тех же нейронов, что и все остальные символы, то какой смысл был бы вообще говорить о различных символах? Какой была бы тогда «подпись» активации данного символа — иными словами, как можно было бы отличить активацию символа А от активации символа В? Не разрушило ли бы это всю нашу теорию? Даже если полного совпадения символов и не происходит, все же, чем больше они пересекаются, тем труднее будет нам поддерживать жизнь нашей теории. (Одна из возможностей пересечения символов представлена на рис. 68.)


Хофштадтер Даглас Р. читать все книги автора по порядку

Хофштадтер Даглас Р. - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Хофштадтер Даглас Р.. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.