MyBooks.club
Все категории

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Сборник задач по математике с решениями для поступающих в вузы
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
190
Читать онлайн
Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы краткое содержание

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы - описание и краткое содержание, автор Альберт Рывкин, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Сборник задач по математике с решениями для поступающих в вузы читать онлайн бесплатно

Сборник задач по математике с решениями для поступающих в вузы - читать книгу онлайн бесплатно, автор Альберт Рывкин

Таким образом,

Мk + 1 = Мk + mk + 1.

Так как Мо = m + 1, то

Остается доказать эту формулу методом математической индукции, что сводится к элементарным выкладкам, которые мы оставляем читателю.

Ответ.

Глава 22

Обратные тригонометрические функции

22.1. Введем обозначения:

В этих обозначениях равенство примет вид

2α = π/4 − β,

причем правая и левая части лежат в интервале (0, π/2). Возьмем тангенсы от каждой из частей:

Так как тангенс является монотонной функцией в интервале (0, π/2), то равенство доказано.

22.2. Пусть

Так как 0 < α + β < π/2 и

Наше выражение принимает теперь вид

π/4 + arcsin √2/4.

Поскольку arcsin √2/4 > arcsin √2/2, то

0 < π/4 + γ < π/2,

где γ = arcsin √2/4 и sin γ = √2/4. Найдем

Поскольку мы оказались в интервале монотонности синуса, то остается воспользоваться определением арксинуса.

Ответ. arcsin [√7 + 1/4].

22.3. Рассмотрим сначала первое и третье слагаемые:

arctg (−2) = α, tg α = −2, −π/2 < α < 0;

arctg (−⅓) = β, tg β = −⅓, −π/2 < β < 0.

Таким образом, −π < α + β < 0, что не является областью главных значений какой−нибудь обратной тригонометрической функции. Поэтому прибавим ко всем частям неравенства π: 0 < π + α + β < π. Теперь π + α + β попадет в область значений арккотангенса, что обеспечивает взаимно однозначный переход к обратным функциям. Найдем

Следовательно,

π + α + β = arcctg (−1/7), т. е. α + β = −arcctg 1/7.

Наше выражение равно arcsin ⅓ − arcctg 1/7. Пусть

arcsin ⅓ = γ, sin γ = ⅓, 0 < γ < π/2;

arcctg 1/7 = δ, ctg δ = 1/7, 0 < δ < π/2.

Так как −π/2 < γ − δ < π/2, что является интервалом значений арксинуса, то вычислим синус от γ − δ:

sin (γ − δ) = sin γ cos δ − cos γ sin δ.

Так как

cos γ = 2√2/3, cos δ = 1/5√2, sin δ = 7/5√2,

то

Ответ. arcsin √2 − 28/30. 

22.4. Сумма существует при 0 ≤ x ≤ 1. Введем обозначения и используем определение арксинуса:

Так как сумма α + β лежит в интервале [0, π], который является интервалом монотонности косинуса, то имеется взаимно однозначное соответствие между α + β и cos (α + β) при условии, что 0 ≤ x ≤ 1. Так как

то α + β = π/2.

Ответ. π/2 при 0 ≤ x ≤ 1.

22.5. Оценим φ = π(x² + x − 3), если 0 ≤ x ≤ √3 − 1/2.

Имеем

Следовательно,

где 0 ≤ 3π/2 − 4π − φ ≤ π/2. Окончательно получаем

arccos sin φ = π − 3π/2 + 4π + φ = 7π/2 + φ.

Ответ. 7π/2 + π(x² + x − 3).

22.6. При 0 ≤ x ≤ 1 оба арксинуса существуют. Для первого это очевидно, а для второго имеем

Следовательно,

и, тем более,

Введем обозначение

arcsin x = α, sin α = x, 0 ≤ α ≤ π/2;

Нужно доказать, что α − β = π/4, или α − π/4 = β. Так как −π/4 ≤ α − π/4 ≤ π/4, то α − π/4 и β лежат в интервале монотонности синуса. Поэтому, если мы докажем, что синусы этих аргументов равны, то тем самым будет доказано и равенство самих аргументов. Поскольку

(перед корнем взят знак плюс, так как cos α ≥ 0 при 0 ≤ α ≤ π/2).

Итак, доказано, что sin (α − π/4) = sin β, откуда следует справедливость нашего равенства.

22.7. Так как x < −1, то −1 < 2x/1 + x² < 0. Введем обозначения

Следовательно,

−3π/2 < α + 2β < −π/2,

т. е. данное выражение лежит в интервале монотонности синуса. Найдем

После подстановки получим

т. е. α + 2β = −π.

Ответ. −π.

22.8. Из уравнения следует, что

arcsin x = π/12 + nπ/3.

Поскольку −π/2 ≤ arcsin x ≤ π/2, то возможны лишь три значения n = 0, −1, 1.

Если n = 0, то arcsin x = π/12,

Если n = −1, то arcsin x = −π/4,

x2 = sin (−π/4) = −1/√2.

Если n = 1, то arcsin x = 5π/12,

Ответ.

22.9. Если x — корень данного уравнения, то и −x будет его корнем. Поэтому достаточно найти лишь неотрицательные корни. Если x ≥ 0, то

Перенеся α в правую часть уравнения, получим β = γ − α, причем 0 ≤ β ≤ π/2 и −π/2 ≤ γ − α ≤ π/2. Поскольку обе части уравнения находятся в интервале монотонности синуса, то данное уравнение равносильно такому:

sin β = sin (γ − α).

Последнее уравнение можно записать в виде

добавив к нему условие |4x/5| ≤ 1, являющееся в данном случае следствием уравнения. Получаем x1 = 0.

Остается  а после возведения в квадрат

Делаем проверку иррационального уравнения.

Ответ. ±1, 0.

22.10. Из условия следует, что x > 0. В таком случае

Уравнение примет вид α + β = π/3, и обе его части окажутся в интервале (0, π], который является интервалом монотонности косинуса. Следовательно, уравнение

cos (α + β) = cos π/3

равносильно данному. Раскрывая скобки и заменяя тригонометрические функции α и β их выражениями через x, придем к уравнению

После возведения в квадрат получим

4(1 − 4x²)(1 − x²) = (4x² + 1)².

При переходе к последнему уравнению могут появиться посторонние корни из−за того, что обе левые скобки могут стать отрицательными. Чтобы избежать этого, добавим условие |2x| ≤ 1.

Уравнение 28х² − 3 = 0, к которому сводится последнее, имеет корни  Из них следует выбрать первый, так как он положителен и так как

Ответ.

22.11. Обозначим

arctg (2 + cos x) = α, arctg (2 cos² x/2) = β.

Так как 2 + cos x > 0 и 2 cos² x/2 > 0, то 0 < α < π/2 и 0 ≤ β < π/2.

Уравнение принимает вид α − β = π/4, причем

−π/2 < α − β < π/2 и −π/2 < π/4 < π/2.

Так как (−π/2, π/2) — интервал монотонности тангенса, то уравнение α − β = π/4 равносильно уравнению tg (α − β) = tg π/4.

Переходя к уравнению

мы можем потерять те корни, для которых tg α или tg β не существует. В нашем случае этого не произойдет, поскольку

tg α = 2 + cos x, tg β = 2 cos² x/2,

а правые части существуют всегда. Получаем уравнение

которое после преобразований принимает вид

2 cos4 x/2 + cos² x/2 = 0.

Так как уравнение 2 cos² x + 1 = 0 не имеет решений, то остается cos x = 0.

Ответ. π(2n + 1).

22.12. Пусть

Так как −π/2 < α − β ≤ π/2, то обе части уравнения лежат в интервале монотонности синуса. Поэтому уравнение равносильно такому:

sin (α − β) = sin γ

или

После упрощений получим уравнение

имеющее единственный корень x = ⅔. Делаем проверку и убеждаемся, что x = ⅔ является корнем предыдущего уравнения и, следовательно, корнем исходного уравнения.

Ответ. ⅔.

22.13. Введем обозначения

Наше уравнение принимает вид α + β + γ = δ или α + β = δ − γ. Обе части уравнения лежат в интервале (−π, π). Если мы возьмем котангенсы от обеих частей уравнения, то можем потерять лишь корень, которому соответствует значение углов, равное 0, так как это — единственное значение из интервала (−π, π), в котором котангенс не существует. Проверим, будет ли выполняться равенство α + β = δ − γ = 0. Если α + β = 0, то arctg (1 − x) = arctg x, откуда 1 − x = x и x = ½. При x = 1 получим, что δ − γ = arctg 3/2 − arctg 3/2 = 0. Таким образом, x1 = ½ — корень уравнения. Если α + β ≠ 0, то от обеих частей уравнения можно взять котангенсы:


Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Сборник задач по математике с решениями для поступающих в вузы отзывы

Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.