MyBooks.club
Все категории

Алексей Лосев - Хаос и структура

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Алексей Лосев - Хаос и структура. Жанр: Математика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Хаос и структура
Издательство:
неизвестно
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
172
Читать онлайн
Алексей Лосев - Хаос и структура

Алексей Лосев - Хаос и структура краткое содержание

Алексей Лосев - Хаос и структура - описание и краткое содержание, автор Алексей Лосев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Хаос и структура читать онлайн бесплатно

Хаос и структура - читать книгу онлайн бесплатно, автор Алексей Лосев

Итак, что такое натуральный ряд чисел или, говоря более точно, — что нужно для того, чтобы осуществилось мышление натурального ряда чисел? Или: какие категории должна затратить мысль, чтобы появился натуральный ряд чисел? Или — причем это и есть единственный вопрос, который мы будем здесь решать, — в чем смысл натурального ряда чисел?

Уже было установлено, что сфера чисел есть сфера чистых актов смыслового полагания. Натуральный ряд чисел есть нечто, относящееся к чистым актам смыслового полагания. Итак, что же мы получим?

Вот мы имеем одно такое мысленное полагание. Что это значит? На первый взгляд кажется, что больше ничего и не надо для сформирования понятия числа. Однако уже первое прикосновение критической мысли показывает всю недостаточность и противоречивость этого утверждения.

Прежде всего, одно такое полагание не может приниматься нами как момент в определении числа, потому что «одно» есть число, и притом даже вполне определенное число, а именно единица. Мы же совсем не знаем ни того, что такое число вообще, ни того, что такое единица. Поэтому, имея «одно мысленное полагание», мы этим еще ровно ничего не вносим в искомое нами определение числа и даже не приступаем к такому определению. Это «одно полагание» недостаточно даже для определения единицы, потому что единица отнюдь не есть только «одно полагание» и она не есть даже просто «полагание». Единица есть, прежде всего, положенное, а не полагание, не говоря уже о том, что и положенное, и полагание требуют для себя полагаемого, того, что именно полагается. Итак, в единице есть I) полагаемое, 2) полагающее, 3) положенное, и между этими тремя моментами существует вполне определенное взаимоотношение. Наконец, полагая «одно», мы тем самым делаем ряд предложений, которые не выведены логически, а взяты как голый и слепой факт. Так, положить «одно» можно только тогда, когда есть где, в чем его полагать; и это «место» не выведено, а определяется наивно и без логики. Такая логическая операция по меньшей мере недостаточно полна, чтобы быть определением чего бы го ни было; по существу же она и неверна, ибо совершенно неизвестно, как от нее можно было бы перейти к искомому определению.

Следовательно, делая «одно мысленное полагание», необходимое для того, чтобы впоследствии образовался натуральный ряд чисел, мы должны в этой операции многое уточнить и многое заменить более ясным. И, прежде всего, не будем употреблять слово «одно». Хотя «одно» среди своих многочисленных значений имеет также значение, не имеющее ничего общего ни с какой единицей и даже ни с каким числом вообще, мы все–таки пока избежим этого выражения, потому что обычно оно понимается, конечно, арифметически, а в таком понимании наше определение понятия числа оказывается тавтологией.

Что важно в этом «одном», которое мы полагаем? Тут важно «нечто». Что именно полагается, это, как мы уже давно установили, является совершенно неважным. Но что полагается именно нечто, это очень важно, так как полагать можно только что–нибудь, а если полагается ничто[10], то это значит только то, что вообще не происходит никакого полагания. Итак, мысль полагает нечто. Нечто есть понятие во всяком случае не числовое, не арифметическое, а избежать тавтологии в определении числа мы только и можем при условии употребления нечисловых категорий. Таким образом, «нечто» является в числе тем, что полагается, — полагаемым. Это полагаемое в процессе полагания становится положенным и превращается из «нечто» в «это». Можно употреблять тут также и другие термины, «одно», «единичность», «бытие», — это не так важно. Важно точно зафиксировать значение той категории, которая единственно здесь имеется в виду.

Итак, «нечто» в результате своего полагания, или са–мополагания, становится «этим», превращается в «это».

§ 19. «Иное этого»; различие, тождество, движение, покой.

Уже здесь запутан целый клубок категорий, который необходимо распутать и точно формулировать.

Прежде всего, «нечто» только тогда может превратиться в «это», когда «это» будет как–то содержать в себе «нечто». Если «это» не рассматривается вполне изолированно, но именно как происшедшее из «нечто», то в нем обязательно должно содержаться «нечто», так как иначе мы и не догадаемся, что «это» получилось из «нечто». Значит, «это» и «нечто» должны быть в каком–то отношении тождественны между собою, равно как и самое раздельное употребление здесь слов и понятий возможно только потому, что тут действует категория различия. Точно так же «превращение» «нечто» в «это» обязательно требует для себя категории движения; если мы не передвинулись от «нечто» в «это», то как же можно говорить о превращении здесь одного в другое или о становлении одного другим? Но и движения мало, так как совершенно ясно, что это движение должно здесь и остановиться, потому что «нечто» не может двигаться бесконечно. Оно должно двигаться и развиваться до стадии «этого», до момента превращения в «это», а не больше того. Как только оно стало «этим», оно остановилось. Таким образом, здесь вполне явственно функционирует категория покоя.

Но выяснить все категории, необходимые для осуществления числа, лучше не на одиночном полагании, а на множественном полагании, т. е. на многих полаганиях, из которых и получаются двойка, тройка, четверка и все прочие числа. Здесь диалектическая игра этих категорий будет гораздо виднее, и через этот анализ станет яснее взаимосвязь этих категорий и в сфере единичного полагания.

Мы имеем «нечто». Мы его полагаем и тем превращаем в «это». Но тут, как сказано, еще не возникает числа и не возникает даже единицы, если ограничиться только простым констатированием этой операции полагания. Чтобы продвинуться дальше, всмотримся в процесс счета, как он ежедневно совершается в нашем сознании. Пробегая по линии натурального ряда чисел, мы находим после «первой» единицы «вторую» единицу, получаем число «два». Как это происходит, если у нас есть только «нечто», превращенное в «это»?

Чтобы произошло зарождение числа «два» или понятия «второго», очевидно, кроме «этого» требуется еще «иное», необходим переход из «этого» в «иное». Если нет ничего «иного», кроме «этого», то никогда не может быть и ничего «второго», т. е. никогда не может быть «двух». «Иное» есть только более общее понятие «второго». Это та сфера, где мы должны искать понятие «второго». Но достаточно ли «иного» для «второго»? Конечно, нет. Все «второе» есть иное в сравнении с «первым», но не всякое «иное» есть «второе» в отношении «первого». Так, если я имею один орех, то перо уже будет «иным» в сравнении с орехом, но оно не будет «вторым». «Вторым» может быть здесь только орех же, другой орех. Точно так же и дом не есть «второе» по сравнению с садом, если последний считать «первым», хотя, несомненно, он есть нечто иное в сравнении с садом. Таким образом, счет, т. е. переход по линии натурального ряда чисел, возможен только тогда, когда имеется в виду родовое тождество считаемых предметов. Можно иметь несколько орехов; тогда один из них будет «первым», другой — «вторым», еще иной — «третьим» и т. д., но нельзя в один ряд ставить орехи, стулья, перья, дома и т. д. Разумеется, можно считать и эти последние предметы, невзирая на их разнородность, но тогда счет будет предполагать более высокое родовое тождество, напр. понятие вещи. Я могу взять перо, карандаш, орех, дом и реку и сказать: вот пять предметов, которые я сейчас мыслю, или вот пять вещей. Тут понятие предмета (или вещи) окажется родовым тождеством, обусловливающим собою счет.

Однако вспомним, что ведь мы занимаемся не «предметами» и «вещами», но числами, которые вполне пусты в смысле всякой «предметности» или «вещественности». Поэтому возникает вопрос: что же есть самотождественного в тех моментах, которые мы сочли необходимыми для числа, т. е. в «этом» и «ином»? У нас пока нет совершенно ничего, кроме «этого» и «иного». У нас пять орехов или груш; у нас нет пока «вещей» или «предметов». И вот мы должны все–таки найти что–то общее между «этим» и «иным», найти их тождество, родовое тождество. Переходя к «иному», мы узнаем в нем старое «это», и только благодаря такому положению дела и возможно «иное» считать «вторым». Итак, между «этим» и «иным» устанавливается тождество, и потому «иное», являясь тем же самым, что и «это», и оказывается «вторым» в отношении «этого».

Общим и самым тождественным может явиться здесь только «нечто», т. е. такое «это», которое еще не положено, неположенное «это». И «это» есть нечто, и «иное» есть нечто. «Это» и «иное» тождественны между собою в моменте «нечто». «Нечто» — то родовое единство и тождество, которое существует между «этим» и «иным». Неположенная значимость самотождественна в утвержденном, положенном бытии и в отрицаемом бытии. Ясно, кроме того, и без дальнейших заключений, что «это» и «иное» должны быть еще и различны между собою. Если «иное» ничем не отличается от «этого», то оно не может быть и иным. Потому оно и иное, что оно не есть одно, не есть это, что оно — «не–это». И чем же отлично «иное» от «этого»? Оно отлично только самым фактом своего инобытия. По смыслу своему, по основному значению «это» и «иное» вполне тождественны (то и другое есть «нечто»), но по фактическому своему существованию, по факту (чисто нумерически), они вполне различны.


Алексей Лосев читать все книги автора по порядку

Алексей Лосев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Хаос и структура отзывы

Отзывы читателей о книге Хаос и структура, автор: Алексей Лосев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.