MyBooks.club
Все категории

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
192
Читать онлайн
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

Черепаха: Какая оригинальная идея, Ахилл. Я расскажу о ней другу и, может быть, он захочет вставить ее в свой Диалог.

Ахилл: Этим он окажет мне честь.

Черепаха: Знаете, боюсь, что я совсем засыпаю, Ахилл. Пойду-ка, пожалуй, пока я еще в силах добраться до дому.

Ахилл: Мне было очень приятно, что вы просидели у меня так долго в такой поздний час только лишь с тем, чтобы составить мне компанию. Уверяю вас, что ваши теоретико-численные рассказы явились прекрасным противоядием против моего обычного верчения в постели. Кто знает, может быть, мне даже удастся сегодня заснуть. В знак благодарности позвольте преподнести вам подарок.

Черепаха: Ах, Ахилл, что за глупости…

Ахилл: Для меня это одно удовольствие, г-жа Ч. Подойдите-ка к комоду; на нем лежит маленькая старинная шкатулка.

(Черепаха подходит к комоду.)

Черепаха: Неужели вы имеете в виду эту золотую шкатулку?

Ахилл: Ее самую. Пожалуйста, примите ее в знак нашей дружбы.

Черепаха: Премного вам благодарна, Ахилл. Гмм… Что это за имена математиков на крышке, да еще по-английски? Что за интересный список…

D e  M o r g a n

A b e l

B o o l e

В r о u w e r

S i e r p i n s k i

W e i e r s t r a s s

Ахилл: По идее, это должно быть Полным Списком Всех Великих Математиков. Только я никогда не мог понять, почему буквы, идущие вниз по диагонали, написаны жирным шрифтом.

Черепаха: Смотрите, тут внизу написано: «Отнимите 1 от диагонали, и вы найдете Баха в Лейпциге».

Ахилл: Я это тоже видел, но не могу сообразить, что бы это значило. Так я не запутывался с тех пор, когда пытался заниматься философией. Особенно меня тогда смутил Кант — оригинально, но уж больно туманно…

Черепаха: Прошу вас, ни слова о философии — я слишком устала. Лучше поползу-ка я домой. (Машинально открывает шкатулку.) Ах! Глядите, здесь внутри куча золотых монет! Да это же луидоры!

Ахилл: Вы доставите мне огромное удовольствие, приняв эти деньги, г-жа Ч.

Черепаха: Но… Но…

Ахилл: Пожалуйста, без возражений. Шкатулка и золото — ваши. И спасибо вам за несравненный вечер.

Черепаха: Как мило с вашей стороны. Надеюсь, вам удастся заснуть: выпейте стаканчик теплого молока, поставьте на патефон вашу любимую пластинку, и пусть вам приснится эта странная Гипотеза Гольдбаха и ее Вариации… Спокойной вам ночи. (Она берет золотую шкатулку, полную луидоров, и направляется к двери. В этот момент раздается громкий стук.) Кто бы это мог быть в такой поздний час, Ахилл?

Ахилл: Понятия не имею. Все это весьма подозрительно… Знаете что, спрячьтесь-ка на всякий случай за комодом!

Черепаха: Отличная мысль. (Заползает за комод.)

Ахилл: Кто там?

Голос: Откройте, полиция!

Ахилл: Входите, дверь не заперта!

(Входят два дюжих полицейских в новеньких, с иголочки, формах, со сверкающими кокардами на фуражках.)

Полицейский: Я — лейтенант Сильвер, а это — копертан Гулд. Проживает ли здесь некто по имени Ахилл?

Ахилл: Это я.

Полицейский: Мистер Ахилл, у нас есть все основания подозревать, что в вашей квартире находится золотая шкатулка с сотней луидоров. Она была украдена сегодня вечером из музея.

Ахилл: Ах, батюшки!

Полицейский: Она должна находиться здесь, потому что, кроме вас, подозревать некого. Придется вам пройти с нами… (Достает ордер на арест.)

Ахилл: Господи, как я счастлив, что вы наконец пришли! Весь вечер я мучился, слушая Черепашьи вариации на тему золотых шкатулок. Надеюсь, вы меня освободите! Прошу вас, господа, загляните за комод, и вы увидите там настоящего преступника!

(Полицейские заглядывают за комод; там, среди пыли и паутины, они видят дрожащую Черепаху с золотой шкатулкой в лапах.)

Полицейский: Ага! Вот она, злодейка! Никогда бы на нее не подумал — но поскольку она поймана с поличным…

Ахилл: Уведите поскорее отсюда эту преступницу, любезные господа. Слава Богу, мне уже никогда не придется слышать ни о ней, ни о ее Золотых Вариациях.

ГЛАВА XIII: Блуп, Флуп и Глуп

Самосознание и хаос

Блуп, Флуп и Глуп — это не имена гномов, не разговоры лягушек в пруду и не бульканье воды в засорившейся раковине. Это компьютерные языки, каждый из которых имеет особое предназначение. Они были придуманы специально для этой главы. Мы воспользуемся ими для того, чтобы объяснить новые значения слова «рекурсивный» — в частности, понятия примитивной рекурсивности и общей рекурсивности. Эти понятия помогут нам лучше объяснить механизм автореферентности в ТТЧ.

Здесь мы совершаем скачок от человеческого мозга и интеллекта к миру математики, техники и компьютеров. Этот переход, каким бы резким он не казался, все же имеет смысл. Мы только что убедились в том, что в сердце интеллекта лежит самосознание. Давайте теперь рассмотрим «самосознание» в более формальных контекстах, таких, как ТТЧ. Между ТТЧ и разумом — огромная дистанция; тем не менее, некоторые идеи окажутся весьма поучительными и, может быть, даже приложимыми к нашим рассуждениям о сознании.

Удивительно то, что самосознание в ТТЧ тесно связано с вопросом о порядке и хаосе среди натуральных чисел. В частности, мы увидим, что упорядоченная система, достаточно сложная, чтобы отразить саму себя, не может быть полностью упорядоченной — в ней обязательно окажутся некие странные, хаотические черты. Читателям, в которых есть что-то от Ахилла, трудно будет в это поверить. Однако здесь существует и некая «магическая» компенсация, что-то вроде порядка внутри хаоса; этот «хаотический порядок» изучается так называемой «теорией о рекурсивных функциях». К несчастью, здесь мы сможем дать только самое поверхностное понятие об этой интереснейшей теме.

Представимость и холодильники

Мы с вами уже довольно часто натыкались на такие выражения, как «достаточно сложный», «достаточно мощный» и тому подобное. Что именно они означают? Давайте вернемся к «войне» Краба с Черепахой и подумаем, какие качества необходимы предмету, чтобы его можно было бы назвать патефоном? Почему бы Крабу не сказать, что его холодильник — это «совершенный» патефон? В доказательство он мог бы положить на холодильник любую пластинку и сказать: «Вот видите, он ее проигрывает!» Если бы Черепаха захотела что-то противопоставить этому дзен-буддйстскому акту, она должна была ответить: «Нет, ваш холодильник такого низкого качества, что его нельзя назвать патефоном: он вообще не может воспроизводить звуков (а тем более, саморазбивальных звуков)». Черепаха может записать пластинку под названием «Меня нельзя сыграть на патефоне X», только если патефон X действительно является патефоном! Метод Черепахи весьма хитер, так как он играет не на слабости системы, а на ее силе. Поэтому, чтобы он подействовал, необходимы патефоны достаточно высокого качества.

То же самое верно и для формальных вариантов теории чисел. ТТЧ является формализацией теории чисел (Ч) именно потому, что ее символы действуют «так как надо»: они не молчат, как холодильник, а выражают существующие в теории чисел истины. Конечно, так же ведут себя символы системы pr. Можно ли и эту систему считать за формализацию Ч, или же она больше похожа на холодильник? На самом деле, она чуть получше холодильника, но все еще очень слаба. Система pr не включает достаточного количества основных истин Ч и поэтому не может считаться за «теорию чисел».

Что же такое «основные истины» Ч? Это примитивно рекурсивные истины, что означает, что они включают только предсказуемо конечные вычисления. Эти основные истины являются для Ч тем же, чем четыре постулата Эвклида для геометрии: они позволяют нам забраковать некоторых кандидатов еще до начала игры, на основании того, что они «недостаточно мощные». В дальнейшем, критерием «достаточной мощности» системы будет представимость в ней всех примитивно рекурсивных истин.

Топор Ганто в метаматематике

Важность этого понятия видна из следующего факта; если у вас есть достаточно мощная формализация теории чисел, то к ней приложим метод Гёделя — следовательно, ваша система неполна. С другой стороны, если ваша система недостаточно мощна (то есть, если не все примитивно рекурсивные истины являются ее теоремами), то она, именно в силу этого недостатка, все равно является неполной. Здесь перед нами тот же «Гантов топор», перенесенный в метаматематику: что бы система не делала, Гёделев Топор отсечет ее голову! Заметьте, что это положение дел также напоминает спор о высоком и низком качестве патефонов в «Акростиконтрапунктусе».


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.