MyBooks.club
Все категории

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.. Жанр: Математика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Дата добавления:
17 сентябрь 2020
Количество просмотров:
133
Читать онлайн
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - описание и краткое содержание, автор Хофштадтер Даглас Р., читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Хофштадтер Даглас Р.

Ахилл: И, поскольку Предложение К — всегда тема предложения П, у нас получается петля: Предложение П теперь указывает на самого себя. Как видите, автореферентность здесь получилась вполне случайно. Обычно Предложения П и К совершенно не похожи — но при правильном выборе темы в предложении П, квайнирование покажет вам этот магический трюк.

Черепаха: Ловко, ничего не скажешь! Странно, почему я сама до этого не додумалась. Скажите, а следующее предложение тоже автореферентно?

«СОСТОИТ ИЗ ЧЕТЫРЕХ СЛОВ»

СОСТОИТ ИЗ ЧЕТЫРЕХ СЛОВ.

Ахилл: Гм-м… Трудно сказать. Это предложение относится не себе самому, но скорее ко фразе «состоит из четырех слов». Хотя, разумеется, эта фраза — ЧАСТЬ предложения.

Черепаха: Так что предложение говорит о своей части — и что же?

Ахилл: Это можно тоже рассматривать как автореференцию, не так ли?

Черепаха: По моему мнению, отсюда еще далеко до настоящей автореферентности. Но не забивайте себе сейчас голову этими сложностями — у вас еще будет время о них поразмыслить.

Ахилл: Правда?

Черепаха: Безусловно, будет. А пока, почему бы вам не попробовать квайнировать фразу «Предваряемый цитатой себя самого, производит ложь»?

Ахилл: А, вы имеете в виду тот хулиганский звонок. Квайнирование этой фразы дает:

«ПРЕДВАРЯЕМЫЙ ЦИТАТОЙ СЕБЯ САМОГО, ПРОИЗВОДИТ ЛОЖЬ»

ПРЕДВАРЯЕМЫЙ ЦИТАТОЙ СЕБЯ САМОГО, ПРОИЗВОДИТ ЛОЖЬ.

Так вот что говорил тот негодяй! Я тогда его не понял. И правда, какое неприличное замечание! Да за такое надо в тюрьму сажать!

Черепаха: Это почему же?

Ахилл: Я от него просто заболеваю, в отличие от предыдущих высказываний, я не могу сказать, истинно ли оно или ложно. И чем больше я о нем думаю, тем больше запутываюсь. У меня от этой путаницы голова идет кругом. Интересно, что за лунатик изобрел подобный кошмар и мучает им по ночам честных людей?

Черепаха: Кто знает… Ну что, пора спускаться?

Ахилл: В этом нет нужды — мы уже на первом этаже. Зайдите обратно, и вы в этом убедитесь (Они заходят в башню и видят небольшую деревянную дверь) Вот и выход — следуйте за мной.

Черепаха: Вы уверены? Я вовсе не хочу свалиться с третьего этажа и сломать себе панцирь.

Ахилл: Разве я вас когда-нибудь обманывал?

(И он открывает дверь. Прямо перед ними сидит, по всей видимости, тот же самый мальчуган, болтающий с той же самой девушкой. Ахилл и г-жа Ч поднимаются по тем же ступенькам, по которым, как кажется, они раньше спускались, чтобы зайти в башню, и выходят во двор, кажущийся тем же самым двориком, в котором они уже побывали раньше.)

Благодарю вас, г-жа Ч, за ваше объяснение по поводу того хулиганского звонка.

Черепаха: А я вас — за прелестную прогулку. Надеюсь, мы скоро увидимся опять.

ГЛАВА XIV: О формально неразрешимых суждениях ТТЧ и родственных систем [41]

Две идеи «устрицы»

НАЗВАНИЕ ЭТОЙ ГЛАВЫ — адаптация заглавия знаменитой статьи Гёделя, опубликованной в 1931 году; я заменил «Principia mathematica» на ТТЧ. Гёдель написал эту статью строго техническим языком, стараясь дать безупречное доказательство своей теоремы; в этой главе я постараюсь изложить его идеи более интуитивно. Сосредоточусь на двух идеях, лежащих в основе Гёделева доказательства. Первая идея — это открытие того факта, что некоторые строчки ТТЧ могут быть интерпретированы как суждения о других строчках ТТЧ; иными словами, ТТЧ оказалась языком, способным к самоанализу. Этот факт вытекает из Гёделевой нумерации. Вторая идея — это то, что данное свойство может быть сконцентрировано полностью в одной строке: в фокусе такой строки — она сама. Этот прием восходит, в принципе, к диагональному методу Кантора.

По моему мнению, всякий, кто желает достичь глубокого понимания Гёделева доказательства, должен признать, что в его основе лежит слияние этих двух идей. Каждая из них по отдельности уже является шедевром, но чтобы соединить их, потребовался гений. Однако если бы мне предложили выбрать, какая из двух идей важнее, я, безусловно, указал бы на первую — Гёделеву нумерацию, поскольку эта идея приложима к понятию значения и упоминания во всех системах, имеющих дело с символами. Эта идея выходит далеко за пределы математической логики, в то время как Канторов прием, как бы значим он ни был для математиков, почти не связан с реальной жизнью.

Первая идея: пары доказательства

Не откладывая дела в долгий ящик, приступим к рассмотрению самого доказательства. В IX главе мы уже объяснили довольно подробно идею Гёделева изоморфизма. Здесь мы постараемся описать математическое понятие, позволяющее нам перевести предложение типа «Строчка 0=0 — теорема ТТЧ» в высказывание теории чисел. Для этого мы воспользуемся парами доказательства. Пара доказательства — это пара натуральных чисел, соотносящихся между собой таким образом:

Два натуральных числа m и n (в данном порядке) являются парой доказательства в ТТЧ тогда и только тогда, если m — Гёделев номер такой деривации ТТЧ, последняя строчка которой имеет Гёделев номер n.

Аналогичное понятие существует и для системы MIU; пожалуй, интуитивно легче понять именно этот случай. Так что давайте на минуту оставим пары доказательства ТТЧ и обратимся к парам доказательства в системе MIU. Их определение почти такое же:

Два натуральных числа m и n (в данном порядке) являются парой доказательства в MIU тогда и только тогда, если m — Гёделев номер такой деривации MIU, последняя строчка которой имеет Гёделев номер n.

Давайте рассмотрим несколько примеров пар доказательства в системе MIU. Пусть m — 3131131111301, n = 301. Эти значения тип составляют пару доказательства, поскольку m — Гёделев номер следующей деривации MIU:

MI

MII

MIIII

MUI

где последняя строчка — MUI — имеет Гёделев номер 301, то есть n.

С другой стороны, при m = 31311311130, и n = 30 пары доказательства не получается. Чтобы понять, почему, рассмотрим деривацию, кодом которой должно было бы являться m:

MI

MII

MIII

MU

В этой предположительной деривации есть неверный шаг. Это — переход от второй к третьей строке: от MII к MIII. В системе MIU нет правила, которое позволяло бы подобный типографский шаг. Соответственно — и это очень важно — нет такого арифметического шага, который позволил бы вам перейти от 311 к 3111. Возможно, что, после того как вы прочли главу IX, это покажется вам тривиальным, но именно подобные наблюдения лежат в основе Гёделева изоморфизма. Все, что мы делаем в формальных системах, имеет свою параллель в арифметических действиях.

Так или иначе, величины m = 31311311130, и n = 30, безусловно, не являются парой доказательства MIU. Само по себе, это еще не означает, что 30 — не номер MIU. Могло бы найтись другое число, составляющее пару доказательства с 30. (На самом деле, мы уже выяснили ранее, что 30 — не теорема MIU. Следовательно, ни одно число не может составлять пару доказательства с 30.)

А как насчет пар доказательства в ТТЧ? Я приведу вам два параллельных примера, лишь один из которых является действительной парой доказательства. Можете ли вы определить, какой именно? (Кстати, именно здесь появляется кодон «611», функция которого — отделять Гёделевы номера последующих строк в деривации ТТЧ. В этом смысле, «611» служит в качестве знака препинания. В системе MIU эту роль выполняет начальное «3» каждой строки; там не нужна никакая дополнительная пунктуация.)

1) m = 626,262,636,223,123.262,111,666,611,223,123,666,111,666

    n = 123,666,111,666


Хофштадтер Даглас Р. читать все книги автора по порядку

Хофштадтер Даглас Р. - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Хофштадтер Даглас Р.. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.