MyBooks.club
Все категории

Эрнст Нагель - Teopeма Гёделя

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Эрнст Нагель - Teopeма Гёделя. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Teopeма Гёделя
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
191
Читать онлайн
Эрнст Нагель - Teopeма Гёделя

Эрнст Нагель - Teopeма Гёделя краткое содержание

Эрнст Нагель - Teopeма Гёделя - описание и краткое содержание, автор Эрнст Нагель, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Нагель Эрнест, Ньюмен Джеймс Рой. Теорема Гёделя: Пер. с англ. Изд. 2-е, испр. — М.: КРАСАНД, 2010. — 120 с. (НАУКУ — ВСЕМ! Шедевры научно-популярной литературы.)Вниманию читателя предлагается книга известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, посвященная теореме Гёделя о неполноте. Эта теорема была изложена в небольшой статье К. Гёделя, которая впоследствии сыграла решающую роль в истории логики и математики. Авторы настоящей книги, не пытаясь дать общий очерк идей и методов математической логики, строят изложение вокруг центральных, с их точки зрения, проблем этой науки — проблем непротиворечивости и полноты. Доказательство того факта, что для достаточно богатых математических теорий требования эти несовместимы, и есть то поразительное открытие Гёделя, которому посвящена книга. Не требуя от читателя по существу никаких предварительных познаний, авторы с успехом объясняют ему сущность одной из самых замечательных и глубоких теорем математики и логики.Для специалистов по математической логике, студентов и аспирантов, а также всех заинтересованных читателей.

Teopeма Гёделя читать онлайн бесплатно

Teopeма Гёделя - читать книгу онлайн бесплатно, автор Эрнст Нагель

Читатель должен твердо уяснить себе, что хотя «Dem(x, z)» кодирует некоторое метаматематическое утверждение, сама эта запись является формулой арифметического исчисления. Формула эта в более привычных обозначениях может быть записана в виде f(x, z) = 0, где буква f обозначает некоторый довольно-таки сложный комплекс арифметических операций над числами. Однако эта более привычная запись не «подсказывает» сразу своей метаматематической интерпретации, почему мы и предпочли запись, приведенную в тексте.


Читатель теперь легко убедится в том, что метаматематическое утверждение, гласящее, что некоторая последовательность формул есть доказательство данной формулы, является истинным в том и только в том случае, если гёделевский номер этой последовательности формул находится с гёделевским номером данной формулы как раз в том арифметическом отношении, которое мы обозначили здесь через «Dem». Вообще, чтобы утверждать истинность или ложность какого-либо интересующего нас метаматематического утверждения, нам достаточно решить вопрос о том, находятся ли некоторые два числа в отношении, обозначаемом через «Dem». Но и обратно: чтобы убедиться, что два числа находятся в названном отношении, достаточно установить истинность метаматематического утверждения, «кодируемого» этим арифметическим отношением. Аналогично, метаматематическое высказывание «Последовательность формул, имеющая гёделевский номер x, не является доказательством формулы, имеющей гёделевский номер z», кодируется некоторой вполне определенной формулой формализованной арифметической системы, являющейся формальным отрицанием формулы «Dem(x, z)», т. е. формулой «~ Dem(x, z)».

Еще несколько слов об обозначениях, используемых в доказательстве теоремы Гёделя. Начнем с примера. Формула «Ǝ x (x = sy)» имеет гёделевский номер m (см. выше, с. 81), а переменная «y» — гёделевский номер 13. Подставив в эту формулу вместо переменной, имеющей гёделевский номер 13 (т. е. вместо «y») цифру[16], обозначающую число m, мы получим в результате формулу «Ǝ x (x = sm)», выражающую утверждение, согласно которому существует такое число x, что это ж непосредственно следует за числом m.

Последняя формула также имеет некоторый гёделевский номер, который совсем нетрудно вычислить. Но вместо того чтобы фактически производить это вычисление, мы можем совершенно однозначно охарактеризовать этот номер чисто метаматематическим образом, говоря, что это гёделевский номер формулы, получаемый из формулы, имеющей гёделевский номер m, подстановкой вместо входящей в эту формулу переменной с гёделевским номером 13 цифры «m». Такая метаматематическая характеристика однозначно определяет некоторое число, являющееся некоторой определенной функцией от чисел m и 13, причем сама эта функция может быть выражена средствами нашей формализованной арифметической системы. Значит, и само число можно выразить внутри нашего исчисления. Обозначим его через «sub(m, 13, m)», напоминая тем самым, что речь идет о гёделевском номере формулы, полученной из формулы, имеющей гёделевский номер m, подстановкой[17] вместо входящей в нее переменной с гёделевским номером 13 цифры, обозначающей число m. Вообще, через «sub(y, 13, y)» мы будем обозначать теперь арифметическую формулу, выражающую внутри арифметического исчисления метаматематическую характеристику: «гёделевский номер формулы, получаемой из формулы, имеющей гёделевский номер y, подстановкой вместо входящей в нее переменной, имеющей гёделевский номер 13, цифры, обозначающей число „y“». Если в выражение «sub(y, 13, y)» мы подставим теперь вместо «y» какую-нибудь определенную цифру, скажем, цифру, обозначающую число m, или выражение 243 000 000, то получающееся в результате выражение также будет обозначать некоторое определенное натуральное число, являющееся притом гёделевским номером некоторой определенной формулы.

У читателя не раз мог возникнуть вопрос, почему, собственно, мы говорили сейчас не просто о «числе y», а — столь вычурно и длинно! — о «цифре, обозначающей y». Впрочем, сама форма вопроса уже отчасти подсказывает ответ. Мы ведь уже упоминали о важном различии между понятиями «число» и «цифра». Цифра — это некоторый знак, т. е. выражение языка, которое можно записывать, стирать, зачеркивать, повторять и т. д. и т. п. Число же — это то, именем (или названием, обозначением) чего является обозначающая его цифра; само по себе число нельзя записать, стереть, зачеркнуть, повторить.

Скажем, когда мы говорим, что 10 — число пальцев на обеих руках, то мы характеризуем этой фразой некоторое «свойство» множества наших пальцев — свойство, которое, разумеется, «цифрой» никак не назовешь. Но число 10 может записываться как арабскими цифрами: «10», так и римскими цифрами (т. е. прописными латинскими буквами) «X»; эти имена сами по себе, конечно, различны, хотя обозначают они одно и то же число. Так вот, когда мы производим подстановку вместо числовой переменной (которая сама есть просто знак, буква), то мы ставим вместо одного знака другой знак. Мы не можем подставить вместо знака число — ведь число, являющееся некоторым свойством (или, как иногда говорят, понятием), вообще не есть что-то такое, что можно непосредственно нанести на бумагу. Итак, вместо числовой — а лучше сказать, цифровой! — переменной мы подставляем именно цифру (или цифровое выражение, скажем «s0» или «7 + 5»), а не число. Именно поэтому мы выше говорили о подстановке цифры (обозначающей число) y, а не самого числа у в интересующее нас метаматематическое выражение.

Читатель может далее поинтересоваться, какое же число обозначается выражением «sub(y, 13, y)», если формула, имеющая гёделевский номер у, не содержит переменной, имеющей гёделевский номер 13, т. е. попросту, если формула не содержит переменной «y». Скажем, sub(243 000 000, 13, 243 000 000) есть гёделевский номер формулы, полученной из формулы, имеющей гёделевский номер 243 000 000, подстановкой вместо переменной «y» цифры[18] 243 000 000. Выше (с. 85) мы уже выяснили, что 243 000 000 — гёделевский номер формулы «0 = 0», не содержащей переменной «y». Но какая же формула получится из формулы «0 = 0» в результате подстановки вместо не входящей в нее переменной «y» цифры, обозначающей число 243 000 000? Ответ очень простой: раз формула не содержит этой переменной, то и подстановка чисто фиктивная, т. е. такая «подстановка» не меняет формулы, иначе говоря, число, обозначаемое записью «sub(243 000 000, 13, 243 000 000)», есть само число 243 000 000.

Заметим, наконец, что выражение «sub(y, 13, y)» не является формулой нашей арифметической системы в том смысле, в каком, например являются формулами выражения «Ǝ x (x = sy)» или «Dem(x, z)», и вот почему. Выражение «0 = 0» мы называем формулой; такая запись утверждает наличие некоторого отношения между двумя числами, так что имеет смысл ставить вопрос, истинно или ложно это утверждение. Аналогично, когда вместо переменных, входящих в выражение «Dem(x, z)», подставляются некоторые цифры, то получающееся выражение оказывается записью некоторого утверждения (о том, что два числа находятся в некотором отношении), о котором опять-таки имеет смысл ставить вопрос, истинно оно или ложно. То же самое можно сказать и о выражении «Ǝ x (x = sy)».

Что же касается выражения «sub(y, 13, y)», даже если переставить в него вместо «y» какую-нибудь конкретную цифру, то оно все равно не будет ничего утверждать и по этой причине не будет ни истинным, ни ложным. Выражение это лишь обозначает (или называет) некоторое число, характеризующее его как некоторую функцию от других чисел. Итак, выражение «Dem(x, z)» (подобно, например, записям «у = f(x)» или «32 + 42 = 52») есть формула и является схемой (или формой) некоторого утверждения; в отличие от него запись «sub(y, 13, y)» (подобно «f(x)» или «(7 × 5) + 8») является лишь схемой (формой) имени некоторого числа, но не формулой.

7.3. Изложение доказательств

Перейдем, наконец, к описанию идеи самого доказательства теоремы Гёделя. Вначале мы дадим совсем простой его набросок, разделив доказательство на пять основных шагов.


Эрнст Нагель читать все книги автора по порядку

Эрнст Нагель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Teopeма Гёделя отзывы

Отзывы читателей о книге Teopeма Гёделя, автор: Эрнст Нагель. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.