(Mt) мужчина А и женщина В
(M2) мужчина В и женщина А
(M3) мужчина С и женщина D
(M4) мужчина D и женщина С
Дети принадлежат к тем же кланам, что и их матери. Функции f и g вычисляются как и обычно, однако будет не лишним напомнить, как именно это делается. В браке М1 жена принадлежит к клану В, следовательно, к этому же клану будут принадлежать и ее дети. Мужчина из клана В вступает в брак по правилу M2, поэтому f(M1) = M2 a g(M1) = M1 так как женщины из клана В подчиняются первому правилу. Получим таблицу
Очевидно, что кланы А и В никогда не породнятся с кланами С и D. Следовательно, рассматриваемое общество является сократимым. В противном случае общество называется несократимым.
ВЕЙЛЬ: Обратите внимание, господин Леви-Стросс, что достаточно рассмотреть несократимые общества, поскольку любое племя можно разделить на несколько несократимых сообществ. Это лишь одно из множества проявлений общего принципа, используемого в самых разных областях математики: если какой-либо объект можно разделить на несколько простых, при этом правила разделения известны, то для анализа всех возможных объектов достаточно изучить эти простые объекты. Представим несократимые общества на языке теории групп. Общество является несократимым тогда и только тогда, когда две любые разновидности брака связаны между собой перестановками f и g, то есть если одну из них можно получить из другой посредством этих перестановок. Не будем забывать, что f и g позволяют восстановить все генеалогическое древо! Очевидно, что это свойство в вашем примере не выполняется: применив f и g к М1 мы можем получить только М1 и М2
Тем не менее два первых общества являются несократимыми. Напомним таблицу, которую мы привели в самом начале:
75
Докажем, что на основе брака Мх можно получить все остальные. В самом деле, применив f и g, получим M3 и M2 соответственно. Если же мы применим сначала f, а затем g, то получим M4 в силу равенства g(f(M1)) = g(M3) = M4. Осталось показать, как можно получить М1. Один из возможных вариантов — дважды применить f, так как f2(M1) = f(M3) = М1. Вот и все! Следовательно, рассматриваемое общество является несократимым.
ЛЕВИ-СТРОСС: Постойте, разве не нужно доказать это же утверждение, взяв за основу M2, М3 и M4 вместо М1?
ВЕЙЛЬ: На самом деле этого не требуется, и сейчас я объясню, почему. Мы знаем, что из Мх можно вывести все возможные разновидности брака. Допустим, что мы хотим вывести все разновидности брака из какого-либо другого Mi. Обозначим через h элемент подгруппы, порожденной f и g, который позволяет перейти от М1 к Mi, то есть такой элемент, для которого выполняется условие h(M1) = Mi.
Так как h принадлежит группе, для него определен обратный элемент h-1. Припишем h-1 с двух сторон равенства и получим h-1(h(M1)) = h-1(Mi). Композицией h и h-1 является тождественное преобразование — вспомните определение обратного элемента! Таким образом, Мх = h-1(Mi). Это означает, что мы можем получить М1 из Mi. Так как правило M1 связано со всеми остальными разновидностями брака, с ними будет связано и любое другое Mi. Подгруппы Sn, обладающие этим свойством, называются транзитивными. Имеем:
Племя, состоящее из n кланов, является несократимым тогда и только тогда, когда подгруппа Sn , порожденная перестановками f и g, является транзитивной.
Объединив это утверждение с предложением 1, получим, что для изучения несократимых обществ, удовлетворяющих трем нашим условиям, необходимо знать: а) какие циклические подгруппы Sn транзитивны и б) какие прямые произведения двух циклических подгрупп Sn транзитивны. Нетрудно видеть, что подгруппа Н
76
группы Sn может быть транзитивной только тогда, когда она содержит по меньшей мере n элементов. Допустим, что эта подгруппа содержит m элементов, где m < n.
Обозначим их через h1, h2... hm. С M1 будут связаны следующие разновидности брака: h1(M1), h2(M2) ... hm(Mm). В лучшем случае все они будут различны, однако этот перечень никогда не будет полным, так как он содержит m элементов, а m меньше n. Применив некоторые другие свойства симметрической группы, найти циклические транзитивные подгруппы Sn несложно, однако давайте остановимся на этом — иначе мы никогда не закончим наш разговор о браках!
ЛЕВИ-СТРОСС: Хотя ваши объяснения по сути намного лучше тех, что преддожили первые антропологи, во всех рассмотренных нами примерах они смогли решить поставленную задачу явным перебором всех возможных сочетаний. Теория групп абсолютно необходима тогда, когда число кланов по-настоящему велико или же когда в правилах заключения браков экзогамия сочетается с эндогамией.
Я понял это, едва начав изучать племя аборигенов мурнгин, живущих на севере Австралии, в Арнем-Ленде. Незадолго до того как я начал работу над докторской, один из крупнейших специалистов по австралийским аборигенам Адольфус Петер Элкин указал, что исключительно формальный анализ систем родства у аборигенов не имеет смысла, поскольку никак не помогает узнать обычаи племени.
Но четко изучить структуры родства у аборигенов мурнгин было крайне важно, так как это племя представляло собой одну из немногих систем ограниченного обмена, в которых различались браки между двоюродными братьями и сестрами: брак с дочерью брата матери разрешался, а брак с дочерью сестры отца — нет. Так как ни одна из известных в то время систем не позволяла объяснить это различие, некоторые авторы выбрали более простое решение — они попросту отказались от анализа закономерностей. Но как может столь точное правило, в котором различаются двоюродные братья и сестры и которое является логичным следствием определенной исходной конфигурации, появиться в системе, не подчиняющейся никаким нормам?
Племя мурнгин делится на два сообщества, иритча и дуа, а каждое из них состоит из четырех кланов. Эти кланы называются нгарит, булаин, каийярк, бангарди, бураланг, баланг, кармарунг и вармут. Названия кланов не имеют особого значения — будем обозначать кланы A1, A2, B1, B2, C1, C2, D1 и D2 Сразу же возникает аномалия, характерная для всех племен этого региона: мужчины не всегда обязаны искать себе жену в другом клане. Существуют две альтернативные формулы, (I)
77
и (II). Первая описывает браки внутри одной и той же половины племени, вторая — в разных. Эти формулы представлены на иллюстрации:
Неизменным остается правило, по которому мать определяет клан своих детей.
Это правило выглядит следующим образом:
ВЕЙЛЬ: Чтобы это общество удовлетворяло нашим условиям, необходимо предположить, что формула, применимая к конкретному человеку, зависит только от его пола и от разновидности брака его родителей, (I) или (II). Для каждого клана определены две разновидности брака, следовательно, имеем 16 различных правил.
Вместо того чтобы обозначить их через М1, M2 ... М16, введем не совсем обычные обозначения, которые помогут упростить расчеты. Во-первых, поставим в соответствие каждому клану племени тройку из нулей и единиц (а, b, с), где
а = 0 для клана А или В, а = 1 для клана С или D,
b = 0 для клана А или С, b = 1 для клана В или D,
с = 0 если номер группы равен 1, и с = 1, если номер группы равен 2.
К примеру, человек из группы А1 будет обозначаться тройкой (0, 0, 0), другой человек из группы В2 — тройкой (0, 1, 1). Верно и обратное: для любой тройки единиц и нулей, к примеру (1, 0, 0), соответствующий клан определяется единственным образом. Так как первое число тройки равно 1, ей соответствует клан С или D. Так как второе число тройки равно 0, ей соответствует клан А или С. Оба этих условия выполняются только в одном случае — если человек принадлежит к клану С. Так как последнее число в тройке равно 0, рассматриваемый человек — член группы С1
78
ЛЕВИ-СТРОСС: Теперь следует обозначить разновидности браков.
ВЕЙЛЬ: Действительно. Мы обозначили каждый клан тройкой чисел (а, b, с).
Добавим к ней четвертую координату, чтобы уточнить формулу брака. Так, каждое правило Mi будет обозначаться четырьмя числами (a, f>, с, d), которые могут равняться 1 или 0. Первые три числа (а, b, с) указывают клан, к которому принадлежит мужчина, вступающий в брак, а четвертое число равно 0 или 1 в зависимости от того, по какой формуле заключается брак — (I) или (II). К примеру, в браке (1, 0, 0, 1) мужчина клана (1, 0, 0), то есть С1 вступает в брак по формуле (II). Следовательно, его женой будет женщина из клана D2, то есть (1,1,1). Клан детей также определяется однозначно: в этом примере они будут принадлежать к клану В2, то есть (0, 1,1). Имеем: