MyBooks.club
Все категории

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.. Жанр: Математика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Дата добавления:
17 сентябрь 2020
Количество просмотров:
133
Читать онлайн
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - описание и краткое содержание, автор Хофштадтер Даглас Р., читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Хофштадтер Даглас Р.

Что получилось бы если бы энзим начал действовать с правого А? Он стер бы это А и затем отделился от цепочки. Когда такое случается, энзим прекращает работу (это общий принцип). Так что результатом будет потеря одного символа.

Давайте посмотрим на действие еще одного энзима:

(1) Искать ближайший справа пиримидин

(2) Привести в действие копирующий механизм

(3) Искать ближайший справа пурин

(4) Обрезать цепочку там (то есть справа от данного подразделения)

Здесь мы впервые встречаемся с терминами «пиримидин» и «пурин». Не пугайтесь — это очень просто. А и G называются пуринами, а С и Тпиримидинами. Таким образом, поиск пиримидина — это всего лишь поиск С или Т.

Копирующий режим и двойные спирали

Другой новый термин — это копирующий режим. Любая цепочка может быть «скопирована» на другую цепочку, но делается это довольно необычным способом. Вместо того, чтобы копировать А на А, вы копируете его на Т, и наоборот. И вместо того, чтобы копировать С на С, вы копируете его на G, и наоборот. Обратите внимание, что пурин копируется на пиримидин, и наоборот. Это называется спариванием комплементарных оснований. Комплементы приведены ниже:

.         комплемент

пури- |  A <==> T |пиримидины

ны     | G <==> C |

Таким образом, «копируя» цепочку, вы не повторяете ее в точности, а производите ее комплементарную цепочку, которая будет записана над первоначальной цепочкой вверх ногами. Рассмотрим конкретный случай. Представьте себе, что упомянутый энзим действует на следующую цепочку (этот энзим тоже любит начинать с А):

CAAAGAGAATCCTCTTTGAT

Энзим может стартовать с любого А; предположим, что он начал со второго. Энзим прикрепляется к нему, затем выполняет шаг (1): поиск ближайшего справа пиримидина. Это означает либо С либо Т. Первое Т находится примерно в середине цепочки, куда мы и отправляемся. Теперь шаг (2): копирующий режим. Напишем над Т перевернутое А. Но это еще не все — копирующий режим продолжает действовать, пока он не отключен — или пока энзим не кончит работать. Это значит, что каждое основание, мимо которого проходит энзим, находящийся в режиме копирования, получит сверху комплементарное основание. Шаг (3) велит нам искать первый пурин справа от нашего Т. Это G, третье с правого конца. Продвигаясь к этой букве, мы должны «копировать», то есть создавать комплементарную цепочку. Вот что у нас получается:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_107.png

Последним шагом является разрезка цепочки. Результатом этого будут две новые цепочки:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_108.png

и AT.

Мы выполнили все команды, в результате у нас получилась двойная цепочка. Когда такое случается, мы отделяем комплементарные цепочки друг от друга (это общий принцип), в результате нашим конечным продуктом будут три цепочки:

AT, CAAAGAGGA и CAAAGAGAATCCTCTTTG

Заметьте, что цепочка бывшая вверх ногами, теперь записана в нормальном виде поэтому правая и левая сторона поменялись местами. Итак, вы ознакомились с большинством типографских операций, которые будут производиться с цепочками. Необходимо упомянуть еще о двух командах. Первая выключает копирующий режим, вторая перебрасывает энзим с данной цепочки на перевернутую цепочку над ней. Когда такое происходит, то вам приходится заменить во всех командах «правый» на «левый», и наоборот. Вместо этого можно просто перевернуть бумагу так, что верхняя цепочка встанет с головы на ноги. Если дана команда перебросить энзим, над которым в данный момент нет комплементарного основания, то энзим отсоединяется от цепочки и на этом его работа заканчивается.

Надо иметь в виду что если у нас имеются две цепочки то команда «разрезать» относится к обеим из них, в то время как «стереть» относится только к той цепочке, над которой энзим работает в данный момент. Когда копирующий режим находится в действии, команда «вставить» относится к обеим цепочкам, и мы вставляем само основание в цепочку, где находится энзим, а его комплемент в верхнюю цепочку. Если копирующий режим выключен, то команда «вставить» относится только к одной цепочке, и в цепочку наверху вставляется пробел.

Когда действует копирующий режим, команды «двигаться» и «искать» означают, что над каждым основанием, мимо которого проходит энзим, нам приходится записывать комплементарное основание. Когда энзим начинает работать, копирующий режим всегда выключен. Если в этот момент встречается команда «выключить копирующий режим», то ничего не происходит. Так же, если копирующий режим уже включен, команда «включить копирующий режим» остается без последствий.

Аминокислоты

raz — разрезать цепочку

str — стереть основание из цепочки

prb — перебросить энзим на другую цепочку

sdl — сдвинуться на одно подразделение влево

sdp — сдвинуться на одно подразделение вправо

кор — включить копирующий режим

vyk — выключить копирующий режим

vsa — вставить А справа от данного подразделения

vsc — вставить С справа от данного подразделения

vsg — вставить G справа от данного подразделения

vst — вставить Т справа от данного подразделения

рmр — искать первый пиримидин справа

рrр — искать первый пурин справа

pml — искать первый пиримидин слева

prl — искать первый пурин слева

Каждая из этих команд — сокращение из трех букв. Мы будем называть эти сокращения аминокислотами. Таким образом, каждый энзим состоит из последовательности аминокислот.

Давайте выберем наугад один из энзимов:

рrр — vsc — кор — sdp — sdl — prb — prl — vst

а также какую-либо цепочку, например,

TAGATCCAGTCCATGGA

и посмотрим, как энзим действует на эту цепочку. Данный энзим присоединяется только к G. Предположим, что на этот раз он начнет с G в середине. Сначала мы ищем пурин справа (то есть, А или G). Теперь мы (энзим) пропускаем ТСС и попадаем на А. Вставляем С. Теперь у нас получается:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_109.png

Стрелочкой отмечено подразделение, к которому привязан энзим. Включаем копирующий режим. Это дает нам перевернутое G над С. Сдвигаемся сначала направо, потом налево, потом переходим на другую цепочку. До сих пор у нас получилось вот что:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_110.png

Перевернем это, с тем чтобы энзим оказался прикрепленным к нижней цепочке:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_111.png

Теперь мы ищем пурин слева, и находим А. Копирующий режим находится в действии, но комплементарные основания уже есть, поэтому мы ничего не добавляем. Наконец, мы вставляем Т и останавливаемся:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_112.png

Окончательным результатом являются две цепочки:

ATG и TAGATCCAGTCCACATCGA

Прежняя цепочка, разумеется, утеряна.

Перевод и типогенетическии код

Читатель может спросить, откуда берутся энзимы и цепочки, и как можно узнать, к какой букве прикрепляется в начале каждый данный энзим. Чтобы найти ответ на второй вопрос, можно попробовать взять наудачу несколько цепочек и посмотреть, как действуют на них и на их «потомков» различные энзимы. Это напоминает головоломку MU, в которой мы начинали с некоей аксиомы и нескольких правил. Единственная разница заключается в том, что после того, как энзим обработал первоначальную цепочку, она утрачивается навсегда. В головоломке MU при получении MIU из MI строчка MI остается невредимой.


Хофштадтер Даглас Р. читать все книги автора по порядку

Хофштадтер Даглас Р. - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Хофштадтер Даглас Р.. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.